Robust Video Content Alignment and Compensation for Rain Removal in a CNN Framework

Rain removal is important for improving the robustness of outdoor vision based systems. Current rain removal methods show limitations either for complex dynamic scenes shot from fast moving cameras, or under torrential rain fall with opaque occlusions. We propose a novel derain algorithm, which appl...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 6286 - 6295
Main Authors Chen, Jie, Tan, Cheen-Hau, Hou, Junhui, Chau, Lap-Pui, Li, He
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2018.00658

Cover

Loading…
Abstract Rain removal is important for improving the robustness of outdoor vision based systems. Current rain removal methods show limitations either for complex dynamic scenes shot from fast moving cameras, or under torrential rain fall with opaque occlusions. We propose a novel derain algorithm, which applies superpixel (SP) segmentation to decompose the scene into depth consistent units. Alignment of scene contents are done at the SP level, which proves to be robust towards rain occlusion and fast camera motion. Two alignment output tensors, i.e., optimal temporal match tensor and sorted spatial-temporal match tensor, provide informative clues for rain streak location and occluded background contents to generate an intermediate derain output. These tensors will be subsequently prepared as input features for a convolutional neural network to restore high frequency details to the intermediate output for compensation of mis-alignment blur. Extensive evaluations show that up to 5dB reconstruction PSNR advantage is achieved over state-of-the-art methods. Visual inspection shows that much cleaner rain removal is achieved especially for highly dynamic scenes with heavy and opaque rainfall from a fast moving camera.
AbstractList Rain removal is important for improving the robustness of outdoor vision based systems. Current rain removal methods show limitations either for complex dynamic scenes shot from fast moving cameras, or under torrential rain fall with opaque occlusions. We propose a novel derain algorithm, which applies superpixel (SP) segmentation to decompose the scene into depth consistent units. Alignment of scene contents are done at the SP level, which proves to be robust towards rain occlusion and fast camera motion. Two alignment output tensors, i.e., optimal temporal match tensor and sorted spatial-temporal match tensor, provide informative clues for rain streak location and occluded background contents to generate an intermediate derain output. These tensors will be subsequently prepared as input features for a convolutional neural network to restore high frequency details to the intermediate output for compensation of mis-alignment blur. Extensive evaluations show that up to 5dB reconstruction PSNR advantage is achieved over state-of-the-art methods. Visual inspection shows that much cleaner rain removal is achieved especially for highly dynamic scenes with heavy and opaque rainfall from a fast moving camera.
Author Tan, Cheen-Hau
Li, He
Chau, Lap-Pui
Hou, Junhui
Chen, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
– sequence: 2
  givenname: Cheen-Hau
  surname: Tan
  fullname: Tan, Cheen-Hau
– sequence: 3
  givenname: Junhui
  surname: Hou
  fullname: Hou, Junhui
– sequence: 4
  givenname: Lap-Pui
  surname: Chau
  fullname: Chau, Lap-Pui
– sequence: 5
  givenname: He
  surname: Li
  fullname: Li, He
BookMark eNotT81KxDAYjKLguvbswUteoPVL0qTJcSmuCssqVfe6pO1XibbJ0lbFtzeiMDA_h2HmnJz44JGQSwYZY2Cuy91jlXFgOgNQUh-RxBSaSaGVyjmYY7JgoESqDDNnJJmmNwDgSgudywV5qkL9Mc1051oMtAx-Rj_TVe9e_fCrrG9jOhzQT3Z2wdMujLSyztMKh_BpexqlpeV2S9ejHfArjO8X5LSz_YTJPy_Jy_rmubxLNw-39-VqkzpWyDnlHKWQnHHVFXkroeaFRuhsq1hjODfQMd1Abljc2lqpm9rm8RCPiEaCWJKrv16HiPvD6AY7fu-1LHQhlfgB9KhQOw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00658
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 6295
ExternalDocumentID 8578756
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-22e5352126f74d50b278e0fad61c92290f18c0491683da58cba4420220258c503
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-22e5352126f74d50b278e0fad61c92290f18c0491683da58cba4420220258c503
PageCount 10
ParticipantIDs ieee_primary_8578756
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.5183895
Snippet Rain removal is important for improving the robustness of outdoor vision based systems. Current rain removal methods show limitations either for complex...
SourceID ieee
SourceType Publisher
StartPage 6286
SubjectTerms Cameras
Heuristic algorithms
Rain
Streaming media
Visualization
Title Robust Video Content Alignment and Compensation for Rain Removal in a CNN Framework
URI https://ieeexplore.ieee.org/document/8578756
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgKtIhveWAkbe3EjjOiiqpCalUVWnWr7NhBFZAgmiz8es5JWhBiYLMz2Xd27s737h3ADdqgUPs-95ivmBfE1HpKRoEXcqPQwZZC-a4aeTIV40XwsOKrBtzua2GstSX4zPbcsMzlmywu3FNZX7rjxUUTmhi4VbVa-_cUJqQv6wyZm_sY2YhI1mw-dBD1h8vZ3GG5HHhSuBbvP9qplNZk1IbJbh0ViOSlV-S6F3_-omj870IPoftdt0dme4t0BA2bHkO7djRJfY23HXicZ7rY5mS5MTYjJUFVmpO7181ziQ0gKjXE_SgwxC0VR9CzJS4TROb2LcOzSXCoyHA6JaMduKsLi9H903Ds1d0VvA26DLnHmHXULpSJJAwMH2gWSjtIlBE0jhwLfEJljPEDRcEaxWWsVRAwV5jLcMIH_gm00iy1p0B0zJUJdILbSzDcxitucfeogCQUiaT0DDpORuv3ikBjXYvn_O_PF3DgtFThsS6hlX8U9gotf66vS5V_AaM-qsg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAq0CK-8cBISu04jjOiiqpAG1WlrbpVduygCkgQTRZ-PeckLQgxsNmZ7Ds7d-d79w6hK7BBvnJdz6GupA6LiHGkCJjje1qCgy24dG018jDk_Sl7mHvzGrre1MIYYwrwmWnbYZHL12mU26eyG2GPl8e30DbYfRaU1VqbFxXKhSuqHJmduxDb8EBUfD6kE9x0Z6OxRXNZ-CS3Td5_NFQp7EmvgYbrlZQwkpd2nql29PmLpPG_S91Dre_KPTza2KR9VDPJAWpUriauLvKqiZ7GqcpXGZ4ttUlxQVGVZPj2dflcoAOwTDS2vwoIcgvVYfBtsc0F4bF5S-F0YhhK3A1D3FvDu1po2rubdPtO1V_BWYLTkDmUGkvuQiiPfaa9jqK-MJ1Yak6iwPLAx0REEEEQEKyWnoiUZIza0lwKE6_jHqJ6kibmCGEVeVIzFcP2Ygi44ZIb2D0oIPZ5LAg5Rk0ro8V7SaGxqMRz8vfnS7TTnwwHi8F9-HiKdq3GSnTWGapnH7k5Bz8gUxeF-r8AzK-uGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Robust+Video+Content+Alignment+and+Compensation+for+Rain+Removal+in+a+CNN+Framework&rft.au=Chen%2C+Jie&rft.au=Tan%2C+Cheen-Hau&rft.au=Hou%2C+Junhui&rft.au=Chau%2C+Lap-Pui&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=6286&rft.epage=6295&rft_id=info:doi/10.1109%2FCVPR.2018.00658&rft.externalDocID=8578756