Robust Video Content Alignment and Compensation for Rain Removal in a CNN Framework
Rain removal is important for improving the robustness of outdoor vision based systems. Current rain removal methods show limitations either for complex dynamic scenes shot from fast moving cameras, or under torrential rain fall with opaque occlusions. We propose a novel derain algorithm, which appl...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 6286 - 6295 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2018.00658 |
Cover
Loading…
Abstract | Rain removal is important for improving the robustness of outdoor vision based systems. Current rain removal methods show limitations either for complex dynamic scenes shot from fast moving cameras, or under torrential rain fall with opaque occlusions. We propose a novel derain algorithm, which applies superpixel (SP) segmentation to decompose the scene into depth consistent units. Alignment of scene contents are done at the SP level, which proves to be robust towards rain occlusion and fast camera motion. Two alignment output tensors, i.e., optimal temporal match tensor and sorted spatial-temporal match tensor, provide informative clues for rain streak location and occluded background contents to generate an intermediate derain output. These tensors will be subsequently prepared as input features for a convolutional neural network to restore high frequency details to the intermediate output for compensation of mis-alignment blur. Extensive evaluations show that up to 5dB reconstruction PSNR advantage is achieved over state-of-the-art methods. Visual inspection shows that much cleaner rain removal is achieved especially for highly dynamic scenes with heavy and opaque rainfall from a fast moving camera. |
---|---|
AbstractList | Rain removal is important for improving the robustness of outdoor vision based systems. Current rain removal methods show limitations either for complex dynamic scenes shot from fast moving cameras, or under torrential rain fall with opaque occlusions. We propose a novel derain algorithm, which applies superpixel (SP) segmentation to decompose the scene into depth consistent units. Alignment of scene contents are done at the SP level, which proves to be robust towards rain occlusion and fast camera motion. Two alignment output tensors, i.e., optimal temporal match tensor and sorted spatial-temporal match tensor, provide informative clues for rain streak location and occluded background contents to generate an intermediate derain output. These tensors will be subsequently prepared as input features for a convolutional neural network to restore high frequency details to the intermediate output for compensation of mis-alignment blur. Extensive evaluations show that up to 5dB reconstruction PSNR advantage is achieved over state-of-the-art methods. Visual inspection shows that much cleaner rain removal is achieved especially for highly dynamic scenes with heavy and opaque rainfall from a fast moving camera. |
Author | Tan, Cheen-Hau Li, He Chau, Lap-Pui Hou, Junhui Chen, Jie |
Author_xml | – sequence: 1 givenname: Jie surname: Chen fullname: Chen, Jie – sequence: 2 givenname: Cheen-Hau surname: Tan fullname: Tan, Cheen-Hau – sequence: 3 givenname: Junhui surname: Hou fullname: Hou, Junhui – sequence: 4 givenname: Lap-Pui surname: Chau fullname: Chau, Lap-Pui – sequence: 5 givenname: He surname: Li fullname: Li, He |
BookMark | eNotT81KxDAYjKLguvbswUteoPVL0qTJcSmuCssqVfe6pO1XibbJ0lbFtzeiMDA_h2HmnJz44JGQSwYZY2Cuy91jlXFgOgNQUh-RxBSaSaGVyjmYY7JgoESqDDNnJJmmNwDgSgudywV5qkL9Mc1051oMtAx-Rj_TVe9e_fCrrG9jOhzQT3Z2wdMujLSyztMKh_BpexqlpeV2S9ejHfArjO8X5LSz_YTJPy_Jy_rmubxLNw-39-VqkzpWyDnlHKWQnHHVFXkroeaFRuhsq1hjODfQMd1Abljc2lqpm9rm8RCPiEaCWJKrv16HiPvD6AY7fu-1LHQhlfgB9KhQOw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00658 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 6295 |
ExternalDocumentID | 8578756 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-22e5352126f74d50b278e0fad61c92290f18c0491683da58cba4420220258c503 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-22e5352126f74d50b278e0fad61c92290f18c0491683da58cba4420220258c503 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8578756 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.5183895 |
Snippet | Rain removal is important for improving the robustness of outdoor vision based systems. Current rain removal methods show limitations either for complex... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 6286 |
SubjectTerms | Cameras Heuristic algorithms Rain Streaming media Visualization |
Title | Robust Video Content Alignment and Compensation for Rain Removal in a CNN Framework |
URI | https://ieeexplore.ieee.org/document/8578756 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgKtIhveWAkbe3EjjOiiqpCalUVWnWr7NhBFZAgmiz8es5JWhBiYLMz2Xd27s737h3ADdqgUPs-95ivmBfE1HpKRoEXcqPQwZZC-a4aeTIV40XwsOKrBtzua2GstSX4zPbcsMzlmywu3FNZX7rjxUUTmhi4VbVa-_cUJqQv6wyZm_sY2YhI1mw-dBD1h8vZ3GG5HHhSuBbvP9qplNZk1IbJbh0ViOSlV-S6F3_-omj870IPoftdt0dme4t0BA2bHkO7djRJfY23HXicZ7rY5mS5MTYjJUFVmpO7181ziQ0gKjXE_SgwxC0VR9CzJS4TROb2LcOzSXCoyHA6JaMduKsLi9H903Ds1d0VvA26DLnHmHXULpSJJAwMH2gWSjtIlBE0jhwLfEJljPEDRcEaxWWsVRAwV5jLcMIH_gm00iy1p0B0zJUJdILbSzDcxitucfeogCQUiaT0DDpORuv3ikBjXYvn_O_PF3DgtFThsS6hlX8U9gotf66vS5V_AaM-qsg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAq0CK-8cBISu04jjOiiqpAG1WlrbpVduygCkgQTRZ-PeckLQgxsNmZ7Ds7d-d79w6hK7BBvnJdz6GupA6LiHGkCJjje1qCgy24dG018jDk_Sl7mHvzGrre1MIYYwrwmWnbYZHL12mU26eyG2GPl8e30DbYfRaU1VqbFxXKhSuqHJmduxDb8EBUfD6kE9x0Z6OxRXNZ-CS3Td5_NFQp7EmvgYbrlZQwkpd2nql29PmLpPG_S91Dre_KPTza2KR9VDPJAWpUriauLvKqiZ7GqcpXGZ4ttUlxQVGVZPj2dflcoAOwTDS2vwoIcgvVYfBtsc0F4bF5S-F0YhhK3A1D3FvDu1po2rubdPtO1V_BWYLTkDmUGkvuQiiPfaa9jqK-MJ1Yak6iwPLAx0REEEEQEKyWnoiUZIza0lwKE6_jHqJ6kibmCGEVeVIzFcP2Ygi44ZIb2D0oIPZ5LAg5Rk0ro8V7SaGxqMRz8vfnS7TTnwwHi8F9-HiKdq3GSnTWGapnH7k5Bz8gUxeF-r8AzK-uGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Robust+Video+Content+Alignment+and+Compensation+for+Rain+Removal+in+a+CNN+Framework&rft.au=Chen%2C+Jie&rft.au=Tan%2C+Cheen-Hau&rft.au=Hou%2C+Junhui&rft.au=Chau%2C+Lap-Pui&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=6286&rft.epage=6295&rft_id=info:doi/10.1109%2FCVPR.2018.00658&rft.externalDocID=8578756 |