Image Segmentation by Cascaded Region Agglomeration
We propose a hierarchical segmentation algorithm that starts with a very fine over segmentation and gradually merges regions using a cascade of boundary classifiers. This approach allows the weights of region and boundary features to adapt to the segmentation scale at which they are applied. The sta...
Saved in:
Published in | 2013 IEEE Conference on Computer Vision and Pattern Recognition pp. 2011 - 2018 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a hierarchical segmentation algorithm that starts with a very fine over segmentation and gradually merges regions using a cascade of boundary classifiers. This approach allows the weights of region and boundary features to adapt to the segmentation scale at which they are applied. The stages of the cascade are trained sequentially, with asymetric loss to maximize boundary recall. On six segmentation data sets, our algorithm achieves best performance under most region-quality measures, and does it with fewer segments than the prior work. Our algorithm is also highly competitive in a dense over segmentation (super pixel) regime under boundary-based measures. |
---|---|
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2013.262 |