Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks

In this paper, we propose a new unsupervised deep learning approach called DeepBit to learn compact binary descriptor for efficient visual object matching. Unlike most existing binary descriptors which were designed with random projections or linear hash functions, we develop a deep neural network t...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1183 - 1192
Main Authors Lin, Kevin, Jiwen Lu, Chu-Song Chen, Jie Zhou
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2016.133

Cover

Loading…
Abstract In this paper, we propose a new unsupervised deep learning approach called DeepBit to learn compact binary descriptor for efficient visual object matching. Unlike most existing binary descriptors which were designed with random projections or linear hash functions, we develop a deep neural network to learn binary descriptors in an unsupervised manner. We enforce three criterions on binary codes which are learned at the top layer of our network: 1) minimal loss quantization, 2) evenly distributed codes and 3) uncorrelated bits. Then, we learn the parameters of the networks with a back-propagation technique. Experimental results on three different visual analysis tasks including image matching, image retrieval, and object recognition clearly demonstrate the effectiveness of the proposed approach.
AbstractList In this paper, we propose a new unsupervised deep learning approach called DeepBit to learn compact binary descriptor for efficient visual object matching. Unlike most existing binary descriptors which were designed with random projections or linear hash functions, we develop a deep neural network to learn binary descriptors in an unsupervised manner. We enforce three criterions on binary codes which are learned at the top layer of our network: 1) minimal loss quantization, 2) evenly distributed codes and 3) uncorrelated bits. Then, we learn the parameters of the networks with a back-propagation technique. Experimental results on three different visual analysis tasks including image matching, image retrieval, and object recognition clearly demonstrate the effectiveness of the proposed approach.
Author Lin, Kevin
Jie Zhou
Chu-Song Chen
Jiwen Lu
Author_xml – sequence: 1
  givenname: Kevin
  surname: Lin
  fullname: Lin, Kevin
  email: kevinlin311.tw@iis.sinica.edu.tw
  organization: Inst. of Inf. Sci., Taipei, Taiwan
– sequence: 2
  surname: Jiwen Lu
  fullname: Jiwen Lu
  email: lujiwen@tsinghua.edu.cn
  organization: Dept. of Autom., Tsinghua Univ., Beijing, China
– sequence: 3
  surname: Chu-Song Chen
  fullname: Chu-Song Chen
  email: song@iis.sinica.edu.tw
  organization: Inst. of Inf. Sci., Taipei, Taiwan
– sequence: 4
  surname: Jie Zhou
  fullname: Jie Zhou
  email: jzhou@tsinghua.edu.cn
  organization: Dept. of Autom., Tsinghua Univ., Beijing, China
BookMark eNotjj1PwzAUAA0CiVIyMrHkD6S8ZyexPUL4VgQIUdbKsV_A0CaRnVLx74kE0w0nne6YHXR9R4ydIiwQQZ9Xb88vCw5YLlCIPZZoqTAvpVCqQNxnM4RSZKVGfcSSGD8BAHWpUOkZe6jJhM5372nVbwZjx_TSdyb8pFcUbfDD2IeY7vz4kS67uB0ofPtIbrI0pI-0DWY9Ydz14SuesMPWrCMl_5yz5c31a3WX1U-399VFnXmUxZihtQKUMFyQUa0T2NhCEy-KVvJcIDl0ynLXNM5aAmcMl6Ch5No2Mle5FXN29tf1RLQagt9MvyspFRTAxS9xn0_B
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.133
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 1192
ExternalDocumentID 7780502
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-1cc3083a23ea8fd31bc59e255f72431ed1d8c2dbbdcce0daa27090629cb7484c3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:54:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-1cc3083a23ea8fd31bc59e255f72431ed1d8c2dbbdcce0daa27090629cb7484c3
PageCount 10
ParticipantIDs ieee_primary_7780502
PublicationCentury 2000
PublicationDate 2016-June
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 2.5219064
Snippet In this paper, we propose a new unsupervised deep learning approach called DeepBit to learn compact binary descriptor for efficient visual object matching....
SourceID ieee
SourceType Publisher
StartPage 1183
SubjectTerms Binary codes
Machine learning
Neural networks
Optimization
Quantization (signal)
Training data
Visualization
Title Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks
URI https://ieeexplore.ieee.org/document/7780502
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD4wkzctJvFKoqkpFFaKoWxXbZ4RAadUkC7-es5OmCDEwJbnBsmzn7rvz3XeE3GZppAJfa0dKhg4K87STprFymPKUALQ5AKbAefYUTxbRdMmWHXLX1sIAgE0-A9e82rt8tZaVCZUNE0PAb5gjD9Bxq2u19vEUHqPt4e13iJ5NzNsbhcB0Y9lzbA5Hr_Nnk9gVu77pmfujs4o1LOMeme2mVOeTfLhVKVz59Yut8b9zPiKDfQkfnbfG6Zh0ID8hvQZz0uaPLlC0a-uwk_XJtOFcfaNWWciS3tuiXYo-qtUx621BTfyWLvKi2hhlU-CYDwAbarg-sk982OTyYkAW48eX0cRpWi4474gjSseXMkRQlgUhZKlWoS8k44Buh04ChBqgfJXKQAmhpARPZVmQeIbpmEthSElleEq6-TqHM0I5eNoLgYHPRMQjnQrEPgwS3H2Ow_nnpG9Wa7WpWTVWzUJd_C2-JIdmt-okrSvSLbcVXCMcKMWNPQffAQ-z4g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMsBUoEW88cBI0rycxCuFqpS2qlCLulWxfUEIlFZNsvDrOSdpihADU5IbLMt27r47331HyG0Uesqx49iQkqGDwqzYCENfGUxZSgDaHABd4Dye-IO5N1ywRYPc1bUwAFAkn4GpX4u7fLWSuQ6VdQNNwK-ZI_fQ7jO7rNbaRVS4j9aH198u-jY-r-8UHN2PZcey2e29Tl90apdv2rpr7o_eKoVp6bfIeDupMqPkw8wzYcqvX3yN_531IensivjotDZPR6QByTFpVaiTVv90iqJtY4etrE2GFevqGy3UhczofVG2S9FLLbTMapNSHcGl8yTN11rdpDjmA8CaaraP6BMfRXp52iHz_uOsNzCqpgvGOyKJzLCldBGWRY4LURgr1xaScUDHIw4cBBugbBVKRwmhpARLRZETWJrrmEuhaUmle0KaySqBU0I5WLHlAgObCY97cSgQ_TAIcP85DmefkbZereW65NVYVgt1_rf4huwPZuPRcvQ0eb4gB3rnypStS9LMNjlcITjIxHVxJr4Bk4a3Kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Learning+Compact+Binary+Descriptors+with+Unsupervised+Deep+Neural+Networks&rft.au=Lin%2C+Kevin&rft.au=Jiwen+Lu&rft.au=Chu-Song+Chen&rft.au=Jie+Zhou&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1183&rft.epage=1192&rft_id=info:doi/10.1109%2FCVPR.2016.133&rft.externalDocID=7780502