Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks
In this paper, we propose a new unsupervised deep learning approach called DeepBit to learn compact binary descriptor for efficient visual object matching. Unlike most existing binary descriptors which were designed with random projections or linear hash functions, we develop a deep neural network t...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1183 - 1192 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2016.133 |
Cover
Loading…
Abstract | In this paper, we propose a new unsupervised deep learning approach called DeepBit to learn compact binary descriptor for efficient visual object matching. Unlike most existing binary descriptors which were designed with random projections or linear hash functions, we develop a deep neural network to learn binary descriptors in an unsupervised manner. We enforce three criterions on binary codes which are learned at the top layer of our network: 1) minimal loss quantization, 2) evenly distributed codes and 3) uncorrelated bits. Then, we learn the parameters of the networks with a back-propagation technique. Experimental results on three different visual analysis tasks including image matching, image retrieval, and object recognition clearly demonstrate the effectiveness of the proposed approach. |
---|---|
AbstractList | In this paper, we propose a new unsupervised deep learning approach called DeepBit to learn compact binary descriptor for efficient visual object matching. Unlike most existing binary descriptors which were designed with random projections or linear hash functions, we develop a deep neural network to learn binary descriptors in an unsupervised manner. We enforce three criterions on binary codes which are learned at the top layer of our network: 1) minimal loss quantization, 2) evenly distributed codes and 3) uncorrelated bits. Then, we learn the parameters of the networks with a back-propagation technique. Experimental results on three different visual analysis tasks including image matching, image retrieval, and object recognition clearly demonstrate the effectiveness of the proposed approach. |
Author | Lin, Kevin Jie Zhou Chu-Song Chen Jiwen Lu |
Author_xml | – sequence: 1 givenname: Kevin surname: Lin fullname: Lin, Kevin email: kevinlin311.tw@iis.sinica.edu.tw organization: Inst. of Inf. Sci., Taipei, Taiwan – sequence: 2 surname: Jiwen Lu fullname: Jiwen Lu email: lujiwen@tsinghua.edu.cn organization: Dept. of Autom., Tsinghua Univ., Beijing, China – sequence: 3 surname: Chu-Song Chen fullname: Chu-Song Chen email: song@iis.sinica.edu.tw organization: Inst. of Inf. Sci., Taipei, Taiwan – sequence: 4 surname: Jie Zhou fullname: Jie Zhou email: jzhou@tsinghua.edu.cn organization: Dept. of Autom., Tsinghua Univ., Beijing, China |
BookMark | eNotjj1PwzAUAA0CiVIyMrHkD6S8ZyexPUL4VgQIUdbKsV_A0CaRnVLx74kE0w0nne6YHXR9R4ydIiwQQZ9Xb88vCw5YLlCIPZZoqTAvpVCqQNxnM4RSZKVGfcSSGD8BAHWpUOkZe6jJhM5372nVbwZjx_TSdyb8pFcUbfDD2IeY7vz4kS67uB0ofPtIbrI0pI-0DWY9Ydz14SuesMPWrCMl_5yz5c31a3WX1U-399VFnXmUxZihtQKUMFyQUa0T2NhCEy-KVvJcIDl0ynLXNM5aAmcMl6Ch5No2Mle5FXN29tf1RLQagt9MvyspFRTAxS9xn0_B |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2016.133 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 1192 |
ExternalDocumentID | 7780502 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-1cc3083a23ea8fd31bc59e255f72431ed1d8c2dbbdcce0daa27090629cb7484c3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:54:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-1cc3083a23ea8fd31bc59e255f72431ed1d8c2dbbdcce0daa27090629cb7484c3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_7780502 |
PublicationCentury | 2000 |
PublicationDate | 2016-June |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 2.5219064 |
Snippet | In this paper, we propose a new unsupervised deep learning approach called DeepBit to learn compact binary descriptor for efficient visual object matching.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1183 |
SubjectTerms | Binary codes Machine learning Neural networks Optimization Quantization (signal) Training data Visualization |
Title | Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks |
URI | https://ieeexplore.ieee.org/document/7780502 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD4wkzctJvFKoqkpFFaKoWxXbZ4RAadUkC7-es5OmCDEwJbnBsmzn7rvz3XeE3GZppAJfa0dKhg4K87STprFymPKUALQ5AKbAefYUTxbRdMmWHXLX1sIAgE0-A9e82rt8tZaVCZUNE0PAb5gjD9Bxq2u19vEUHqPt4e13iJ5NzNsbhcB0Y9lzbA5Hr_Nnk9gVu77pmfujs4o1LOMeme2mVOeTfLhVKVz59Yut8b9zPiKDfQkfnbfG6Zh0ID8hvQZz0uaPLlC0a-uwk_XJtOFcfaNWWciS3tuiXYo-qtUx621BTfyWLvKi2hhlU-CYDwAbarg-sk982OTyYkAW48eX0cRpWi4474gjSseXMkRQlgUhZKlWoS8k44Buh04ChBqgfJXKQAmhpARPZVmQeIbpmEthSElleEq6-TqHM0I5eNoLgYHPRMQjnQrEPgwS3H2Ow_nnpG9Wa7WpWTVWzUJd_C2-JIdmt-okrSvSLbcVXCMcKMWNPQffAQ-z4g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMsBUoEW88cBI0rycxCuFqpS2qlCLulWxfUEIlFZNsvDrOSdpihADU5IbLMt27r47331HyG0Uesqx49iQkqGDwqzYCENfGUxZSgDaHABd4Dye-IO5N1ywRYPc1bUwAFAkn4GpX4u7fLWSuQ6VdQNNwK-ZI_fQ7jO7rNbaRVS4j9aH198u-jY-r-8UHN2PZcey2e29Tl90apdv2rpr7o_eKoVp6bfIeDupMqPkw8wzYcqvX3yN_531IensivjotDZPR6QByTFpVaiTVv90iqJtY4etrE2GFevqGy3UhczofVG2S9FLLbTMapNSHcGl8yTN11rdpDjmA8CaaraP6BMfRXp52iHz_uOsNzCqpgvGOyKJzLCldBGWRY4LURgr1xaScUDHIw4cBBugbBVKRwmhpARLRZETWJrrmEuhaUmle0KaySqBU0I5WLHlAgObCY97cSgQ_TAIcP85DmefkbZereW65NVYVgt1_rf4huwPZuPRcvQ0eb4gB3rnypStS9LMNjlcITjIxHVxJr4Bk4a3Kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Learning+Compact+Binary+Descriptors+with+Unsupervised+Deep+Neural+Networks&rft.au=Lin%2C+Kevin&rft.au=Jiwen+Lu&rft.au=Chu-Song+Chen&rft.au=Jie+Zhou&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1183&rft.epage=1192&rft_id=info:doi/10.1109%2FCVPR.2016.133&rft.externalDocID=7780502 |