Reducing peak electricity demand in building climate control using real-time pricing and model predictive control

A method to reduce peak electricity demand in building climate control by using real-time electricity pricing and applying model predictive control (MPC) is investigated. We propose to use a newly developed time-varying, hourly-based electricity tariff for end-consumers, that has been designed to tr...

Full description

Saved in:
Bibliographic Details
Published in49th IEEE Conference on Decision and Control (CDC) pp. 1927 - 1932
Main Authors Oldewurtel, F, Ulbig, A, Parisio, A, Andersson, G, Morari, M
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2010
Subjects
Online AccessGet full text
ISBN142447745X
9781424477456
ISSN0191-2216
DOI10.1109/CDC.2010.5717458

Cover

Loading…
Abstract A method to reduce peak electricity demand in building climate control by using real-time electricity pricing and applying model predictive control (MPC) is investigated. We propose to use a newly developed time-varying, hourly-based electricity tariff for end-consumers, that has been designed to truly reflect marginal costs of electricity provision, based on spot market prices as well as on electricity grid load levels, which is directly incorporated into the MPC cost function. Since this electricity tariff is only available for a limited time window into the future we use least-squares support vector machines for electricity tariff price forecasting and thus provide the MPC controller with the necessary estimated time-varying costs for the whole prediction horizon. In the given context, the hourly pricing provides an economic incentive for a building controller to react sensitively with respect to high spot market electricity prices and high grid loading, respectively. Within the proposed tariff regime, grid-friendly behaviour is rewarded. It can be shown that peak electricity demand of buildings can be significantly reduced. The here presented study is an example for the successful implementation of demand response (DR) in the field of building climate control.
AbstractList A method to reduce peak electricity demand in building climate control by using real-time electricity pricing and applying model predictive control (MPC) is investigated. We propose to use a newly developed time-varying, hourly-based electricity tariff for end-consumers, that has been designed to truly reflect marginal costs of electricity provision, based on spot market prices as well as on electricity grid load levels, which is directly incorporated into the MPC cost function. Since this electricity tariff is only available for a limited time window into the future we use least-squares support vector machines for electricity tariff price forecasting and thus provide the MPC controller with the necessary estimated time-varying costs for the whole prediction horizon. In the given context, the hourly pricing provides an economic incentive for a building controller to react sensitively with respect to high spot market electricity prices and high grid loading, respectively. Within the proposed tariff regime, grid-friendly behaviour is rewarded. It can be shown that peak electricity demand of buildings can be significantly reduced. The here presented study is an example for the successful implementation of demand response (DR) in the field of building climate control.
Author Parisio, A
Ulbig, A
Morari, M
Andersson, G
Oldewurtel, F
Author_xml – sequence: 1
  givenname: F
  surname: Oldewurtel
  fullname: Oldewurtel, F
  email: oldewurtel@control.ee.ethz.ch
  organization: Dept. of Electr. Eng., ETH Zurich, Zurich, Switzerland
– sequence: 2
  givenname: A
  surname: Ulbig
  fullname: Ulbig, A
  email: ulbig@eeh.ee.ethz.ch
  organization: Dept. of Electr. Eng., ETH Zurich, Zurich, Switzerland
– sequence: 3
  givenname: A
  surname: Parisio
  fullname: Parisio, A
  email: aparisio@unisannio.it
  organization: Dept. of Eng., Univ. degli Studi del Sannio, Benevento, Italy
– sequence: 4
  givenname: G
  surname: Andersson
  fullname: Andersson, G
  email: andersson@eeh.ee.ethz.ch
  organization: Dept. of Electr. Eng., ETH Zurich, Zurich, Switzerland
– sequence: 5
  givenname: M
  surname: Morari
  fullname: Morari, M
  email: morari@control.ee.ethz.ch
  organization: Dept. of Electr. Eng., ETH Zurich, Zurich, Switzerland
BookMark eNo9kFFLwzAQxyNOcJt7F3zJF-jMJU2TPkp1KgwEUfBtpMlVomk721TYt7fF6dPx_3G_4-4WZNa0DRJyCWwNwPLr4rZYczYmqUClUp-QVa40pDxNlUozcUoWf0G-zcicQQ4J55Cdk0XffzDGNMuyOfl6RjdY37zTPZpPigFt7Lz18UAd1qZx1De0HHxwU48NvjYRqW2b2LWBDv1EOzQhib5Gup_UkUxe3ToMI0HnbfTf_9IFOatM6HF1rEvyurl7KR6S7dP9Y3GzTTwoGROwvFTWykpXmTSgeVUpFA6dBg7WoMYSpHHcifEUwQTXluV5XnIpBWYliiW5-p3rEXE3blab7rA7vkv8AH0BYD8
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC.2010.5717458
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424477463
1424477441
9781424477449
1424477468
EndPage 1932
ExternalDocumentID 5717458
Genre orig-research
GroupedDBID 29P
6IE
6IF
6IH
6IK
6IM
AAJGR
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-1c2b7cc5f8f65a182ff7e3ded8121cae8eb15ad2d300830328c0999b2553e6be3
IEDL.DBID RIE
ISBN 142447745X
9781424477456
ISSN 0191-2216
IngestDate Wed Aug 27 03:39:50 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-1c2b7cc5f8f65a182ff7e3ded8121cae8eb15ad2d300830328c0999b2553e6be3
PageCount 6
ParticipantIDs ieee_primary_5717458
PublicationCentury 2000
PublicationDate 2010-Dec.
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-Dec.
PublicationDecade 2010
PublicationTitle 49th IEEE Conference on Decision and Control (CDC)
PublicationTitleAbbrev CDC
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008066
ssj0000527409
Score 1.8524358
Snippet A method to reduce peak electricity demand in building climate control by using real-time electricity pricing and applying model predictive control (MPC) is...
SourceID ieee
SourceType Publisher
StartPage 1927
SubjectTerms Buildings
Correlation
Electricity
Lighting
Meteorology
Optimization
Support vector machines
Title Reducing peak electricity demand in building climate control using real-time pricing and model predictive control
URI https://ieeexplore.ieee.org/document/5717458
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELXanuDC0iJ2-cARl8SpE_dcqCqkIoSo1FvlZYyilrSg9MLXM87GIg7cHEujOHZkv-eZeUPIVaJBK3CaxZwjQRk6YCrkmgUuRnzitHKhz0aePsST2eB-LuYtct3kwgBAEXwGfd8sfPl2bbb-qgzJO-JnIdukjcStzNVq7lMCgfzKS1FVu7AMSj8l8hGGw4jrpC6EO2Jeaz1Vz43_MhjejG5HZcBX9bIfVVeKQ2e8R6b1cMtYk2V_m-u--fil5Pjf79knva_0PvrYHFwHpAXZIdn9pkzYJW9PXtIVm3QDaknLYjmpQchOLbyqzNI0o7oqqU3NKkXgC7SKe6c-mP6FIhxdMV-7nm68KfZ4u6L0DvZ4B5HfamujHpmN755HE1ZVZ2ApQo6chYbrxBjhpIuFQpriXAKRBYuQITQKJJ4CQlluIw_zvGyf8WhUI4eJINYQHZFOts7gmFA5kDrCrYYPDK6hNtKIyFgDKtIJcC5PSNdP3mJTCnAsqnk7_bv7jOzwJubknHTy9y1cIHLI9WXxy3wCJwi-xg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GOAAXHhviTQ4cyWjTpe3Og2nANiG0SbtNSeqgaqMbqLvw63H64iEO3NJIVtOksj_H9mdCrgIFSoJRzOccHZSOASZdrphjfMQnRknj2mrk4cjvT9oPUzGtkeuqFgYAsuQzaNlhFsuPlnptr8rQeUf8LMINsilsMW5erVXdqDgCPSxLRlXo4dDJI5XokTBciF-WdSHgEdOS7al4riKYTueme9vNU76K1_3ou5KZnd4uGZYLzrNN5q11qlr64xeX43-_aI80vwr86FNluvZJDZIDsvONm7BB3p4tqSsO6QrknObtcmKNoJ1G8CqTiMYJVUVTbaoXMUJfoEXmO7Xp9C8UAemC2e71dGVFccbKZc13cMaGiKyyLYWaZNK7G3f7rOjPwGIEHSlzNVeB1sKExhcSHRVjAvAiiBA0uFpCiHZAyIhHngV6lrhPWzyq0IvxwFfgHZJ6skzgiNCwHSoPlQ1vazxDpUMtPB1pkJ4KgPPwmDTs5s1WOQXHrNi3k7-nL8lWfzwczAb3o8dTss2rDJQzUk_f13COOCJVF9nv8wlK_cIO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=49th+IEEE+Conference+on+Decision+and+Control+%28CDC%29&rft.atitle=Reducing+peak+electricity+demand+in+building+climate+control+using+real-time+pricing+and+model+predictive+control&rft.au=Oldewurtel%2C+F&rft.au=Ulbig%2C+A&rft.au=Parisio%2C+A&rft.au=Andersson%2C+G&rft.date=2010-12-01&rft.pub=IEEE&rft.isbn=9781424477456&rft.issn=0191-2216&rft.spage=1927&rft.epage=1932&rft_id=info:doi/10.1109%2FCDC.2010.5717458&rft.externalDocID=5717458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2216&client=summon