Masseter Muscle Segmentation from Cone-Beam CT Images using Generative Adversarial Network

Masseter segmentation from noisy and blurry cone-beam CT (CBCT) images is a challenging issue considering the device-specific image artefacts. In this paper, we propose a novel approach for noise reduction and masseter muscle segmentation from CBCT images using a generative adversarial network (GAN)...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) pp. 1188 - 1192
Main Authors Zhang, Yungeng, Pei, Yuru, Qin, Haifang, Guo, Yuke, Ma, Gengyu, Xu, Tianmin, Zha, Hongbin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Masseter segmentation from noisy and blurry cone-beam CT (CBCT) images is a challenging issue considering the device-specific image artefacts. In this paper, we propose a novel approach for noise reduction and masseter muscle segmentation from CBCT images using a generative adversarial network (GAN)-based framework. We adapt the regression model of muscle segmentation from traditional CT (TCT) images to the domain of CBCT images without using prior paired images. The proposed framework is built upon the unsupervised CycleGAN. We mainly address the shape distortion problem in the unsupervised domain adaptation framework. A structure-aware constraint is introduced to guarantee the shape preservation in the feature embedding and image generation processes. We explicitly define a joint embedding space of both the TCT and CBCT images to exploit the intrinsic semantic representation, which is key to the intra-and cross-domain image generation and muscle segmentation. The proposed approach is applied to clinically captured CBCT images. We demonstrate both the effectiveness and efficiency of the proposed approach in noise reduction and muscle segmentation tasks compared with the state-of-the-art.
AbstractList Masseter segmentation from noisy and blurry cone-beam CT (CBCT) images is a challenging issue considering the device-specific image artefacts. In this paper, we propose a novel approach for noise reduction and masseter muscle segmentation from CBCT images using a generative adversarial network (GAN)-based framework. We adapt the regression model of muscle segmentation from traditional CT (TCT) images to the domain of CBCT images without using prior paired images. The proposed framework is built upon the unsupervised CycleGAN. We mainly address the shape distortion problem in the unsupervised domain adaptation framework. A structure-aware constraint is introduced to guarantee the shape preservation in the feature embedding and image generation processes. We explicitly define a joint embedding space of both the TCT and CBCT images to exploit the intrinsic semantic representation, which is key to the intra-and cross-domain image generation and muscle segmentation. The proposed approach is applied to clinically captured CBCT images. We demonstrate both the effectiveness and efficiency of the proposed approach in noise reduction and muscle segmentation tasks compared with the state-of-the-art.
Author Ma, Gengyu
Guo, Yuke
Qin, Haifang
Zha, Hongbin
Zhang, Yungeng
Xu, Tianmin
Pei, Yuru
Author_xml – sequence: 1
  givenname: Yungeng
  surname: Zhang
  fullname: Zhang, Yungeng
  organization: Department of Machine Intelligence, Peking University, Beijing, China
– sequence: 2
  givenname: Yuru
  surname: Pei
  fullname: Pei, Yuru
  organization: Department of Machine Intelligence, Peking University, Beijing, China
– sequence: 3
  givenname: Haifang
  surname: Qin
  fullname: Qin, Haifang
  organization: Department of Machine Intelligence, Peking University, Beijing, China
– sequence: 4
  givenname: Yuke
  surname: Guo
  fullname: Guo, Yuke
  organization: Luoyang Institute of Science and Technology, Luoyang, China
– sequence: 5
  givenname: Gengyu
  surname: Ma
  fullname: Ma, Gengyu
  organization: uSens Incorporation, San Jose, USA
– sequence: 6
  givenname: Tianmin
  surname: Xu
  fullname: Xu, Tianmin
  organization: School of Stomatology, Stomatology Hospital, Peking University, Beijing, China
– sequence: 7
  givenname: Hongbin
  surname: Zha
  fullname: Zha, Hongbin
  organization: Department of Machine Intelligence, Peking University, Beijing, China
BookMark eNotkMtOwzAURA0CiVLyAYiNfyDBN35m2UZQIrWwaNmwqZz0Ogrkgey0iL8nEp3NzOJoRppbctUPPRJyDywBYNljsV0WScogS4yWmUjVBYkybUByo7gSAJdkBpmQsREyvSFRCJ9skhaCMzEjHxsbAo7o6eYYqhbpFusO-9GOzdBT54eO5tNgvEQ7pR0tOltjoMfQ9DVdYY9-Ik9IF4cT-mB9Y1v6iuPP4L_uyLWzbcDo7HPy_vy0y1_i9duqyBfruAEtxxjKCqQSlSpNKQUvBTIpGXAEdJpVzkqVMg1VxsXBaJWC4KnWzoIDphxaPicP_70NIu6_fdNZ_7s_v8H_AIGtVH8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI.2019.8759426
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538636411
1538636417
EISSN 1945-8452
EndPage 1192
ExternalDocumentID 8759426
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-1bc1564c6b8b543b4e055013e1ef70cfa562071c934d8762143277fa1f106fea3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:27:55 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-1bc1564c6b8b543b4e055013e1ef70cfa562071c934d8762143277fa1f106fea3
PageCount 5
ParticipantIDs ieee_primary_8759426
PublicationCentury 2000
PublicationDate 2019-April
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-April
PublicationDecade 2010
PublicationTitle 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
PublicationTitleAbbrev ISBI
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.1482105
Snippet Masseter segmentation from noisy and blurry cone-beam CT (CBCT) images is a challenging issue considering the device-specific image artefacts. In this paper,...
SourceID ieee
SourceType Publisher
StartPage 1188
SubjectTerms CBCT images
domain adaptation
Feature extraction
generative adversarial network
Generators
Image generation
Image segmentation
joint embedding
Labeling
Muscle segmentation
Muscles
Shape
structure-aware shape preservation
Title Masseter Muscle Segmentation from Cone-Beam CT Images using Generative Adversarial Network
URI https://ieeexplore.ieee.org/document/8759426
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwED4BU7v0AVXf8tCxhgQ7JF6pikolUCVAQl1QbJ9RVUGrkiz99T0nKX2oQzcrUhzLvvi-s7_7DuBKWKus7CJXxgguE-W4wijhkbBKqlTRz1mofY57dzN5P4_mNbje5sIgYkE-w7ZvFnf59sXk_qisQ9hakUepQz1WqszV2p6nkCuUFJpXF5dhoDrDSX_ouVtkDOV7PwqoFP5jsAejzy-XtJHndp7ptnn_Jcr436HtQ-srU489bH3QAdRwfQi730QGm_A4InzsSS9slG_ISNgEl6sq42jNfHoJo86Q9zGl1pQNV7TFbJgnxC9ZqUrtt0RWlG7epN5g2bgkj7dgNrid3tzxqqICfyKYkPFQGy8OY3o60ZEUWmJAEUooMEQXB8alhIYIcxglpPXbJIGpbhy7NHQUOTpMxRE01jSkY2Ay0T1rlLax9UFWrL2WWOhEN9BSOx2fQNPP0uK1FM1YVBN0-vfjM9jxK1VSYs6hkb3leEHePtOXxTJ_AHEzqgw
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgALjxbxxgMjbpvaaeK1iKqBpkJqK1UsVfyqEGpBNFn49ZyTUB5iYLMixbHsy91n-7vvAK6Y1kLztqFCKUZ5KCwVxg-pz7TgIhH4c-Zqn8NOf8Lvpv60AtfrXBhjTE4-Mw3XzO_y9YvK3FFZE7G1wIiyAZu-wxVFttb6RAWDIcfNeXl16bVEMxp1I8feQnMo3vxRQiWPIL1diD-_XRBHnhtZKhvq_Zcs438Htwf1r1w98rCOQvtQMcsD2PkmM1iDxxgRsqO9kDhboZmQkZkvypyjJXEJJgQ7M7RrEmyNSbRAJ7MijhI_J4UutXOKJC_evEqcyZJhQR-vw6R3O77p07KmAn1CoJBSTyonD6M6MpQ-Z5KbFs6lx4xnbNBSNkE8hKhDCca1c5QIp9pBYBPP4t7RmoQdQnWJQzoCwkPZ0UpIHWi3zQqkUxPzLGu3JJdWBsdQc7M0ey1kM2blBJ38_fgStvrjeDAbRMP7U9h2q1YQZM6gmr5l5hxjfyov8iX_AIe8rVk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+16th+International+Symposium+on+Biomedical+Imaging+%28ISBI+2019%29&rft.atitle=Masseter+Muscle+Segmentation+from+Cone-Beam+CT+Images+using+Generative+Adversarial+Network&rft.au=Zhang%2C+Yungeng&rft.au=Pei%2C+Yuru&rft.au=Qin%2C+Haifang&rft.au=Guo%2C+Yuke&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1188&rft.epage=1192&rft_id=info:doi/10.1109%2FISBI.2019.8759426&rft.externalDocID=8759426