Masseter Muscle Segmentation from Cone-Beam CT Images using Generative Adversarial Network
Masseter segmentation from noisy and blurry cone-beam CT (CBCT) images is a challenging issue considering the device-specific image artefacts. In this paper, we propose a novel approach for noise reduction and masseter muscle segmentation from CBCT images using a generative adversarial network (GAN)...
Saved in:
Published in | 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) pp. 1188 - 1192 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Masseter segmentation from noisy and blurry cone-beam CT (CBCT) images is a challenging issue considering the device-specific image artefacts. In this paper, we propose a novel approach for noise reduction and masseter muscle segmentation from CBCT images using a generative adversarial network (GAN)-based framework. We adapt the regression model of muscle segmentation from traditional CT (TCT) images to the domain of CBCT images without using prior paired images. The proposed framework is built upon the unsupervised CycleGAN. We mainly address the shape distortion problem in the unsupervised domain adaptation framework. A structure-aware constraint is introduced to guarantee the shape preservation in the feature embedding and image generation processes. We explicitly define a joint embedding space of both the TCT and CBCT images to exploit the intrinsic semantic representation, which is key to the intra-and cross-domain image generation and muscle segmentation. The proposed approach is applied to clinically captured CBCT images. We demonstrate both the effectiveness and efficiency of the proposed approach in noise reduction and muscle segmentation tasks compared with the state-of-the-art. |
---|---|
AbstractList | Masseter segmentation from noisy and blurry cone-beam CT (CBCT) images is a challenging issue considering the device-specific image artefacts. In this paper, we propose a novel approach for noise reduction and masseter muscle segmentation from CBCT images using a generative adversarial network (GAN)-based framework. We adapt the regression model of muscle segmentation from traditional CT (TCT) images to the domain of CBCT images without using prior paired images. The proposed framework is built upon the unsupervised CycleGAN. We mainly address the shape distortion problem in the unsupervised domain adaptation framework. A structure-aware constraint is introduced to guarantee the shape preservation in the feature embedding and image generation processes. We explicitly define a joint embedding space of both the TCT and CBCT images to exploit the intrinsic semantic representation, which is key to the intra-and cross-domain image generation and muscle segmentation. The proposed approach is applied to clinically captured CBCT images. We demonstrate both the effectiveness and efficiency of the proposed approach in noise reduction and muscle segmentation tasks compared with the state-of-the-art. |
Author | Ma, Gengyu Guo, Yuke Qin, Haifang Zha, Hongbin Zhang, Yungeng Xu, Tianmin Pei, Yuru |
Author_xml | – sequence: 1 givenname: Yungeng surname: Zhang fullname: Zhang, Yungeng organization: Department of Machine Intelligence, Peking University, Beijing, China – sequence: 2 givenname: Yuru surname: Pei fullname: Pei, Yuru organization: Department of Machine Intelligence, Peking University, Beijing, China – sequence: 3 givenname: Haifang surname: Qin fullname: Qin, Haifang organization: Department of Machine Intelligence, Peking University, Beijing, China – sequence: 4 givenname: Yuke surname: Guo fullname: Guo, Yuke organization: Luoyang Institute of Science and Technology, Luoyang, China – sequence: 5 givenname: Gengyu surname: Ma fullname: Ma, Gengyu organization: uSens Incorporation, San Jose, USA – sequence: 6 givenname: Tianmin surname: Xu fullname: Xu, Tianmin organization: School of Stomatology, Stomatology Hospital, Peking University, Beijing, China – sequence: 7 givenname: Hongbin surname: Zha fullname: Zha, Hongbin organization: Department of Machine Intelligence, Peking University, Beijing, China |
BookMark | eNotkMtOwzAURA0CiVLyAYiNfyDBN35m2UZQIrWwaNmwqZz0Ogrkgey0iL8nEp3NzOJoRppbctUPPRJyDywBYNljsV0WScogS4yWmUjVBYkybUByo7gSAJdkBpmQsREyvSFRCJ9skhaCMzEjHxsbAo7o6eYYqhbpFusO-9GOzdBT54eO5tNgvEQ7pR0tOltjoMfQ9DVdYY9-Ik9IF4cT-mB9Y1v6iuPP4L_uyLWzbcDo7HPy_vy0y1_i9duqyBfruAEtxxjKCqQSlSpNKQUvBTIpGXAEdJpVzkqVMg1VxsXBaJWC4KnWzoIDphxaPicP_70NIu6_fdNZ_7s_v8H_AIGtVH8 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISBI.2019.8759426 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781538636411 1538636417 |
EISSN | 1945-8452 |
EndPage | 1192 |
ExternalDocumentID | 8759426 |
Genre | orig-research |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i175t-1bc1564c6b8b543b4e055013e1ef70cfa562071c934d8762143277fa1f106fea3 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:27:55 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-1bc1564c6b8b543b4e055013e1ef70cfa562071c934d8762143277fa1f106fea3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8759426 |
PublicationCentury | 2000 |
PublicationDate | 2019-April |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-April |
PublicationDecade | 2010 |
PublicationTitle | 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) |
PublicationTitleAbbrev | ISBI |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 |
Score | 2.1482105 |
Snippet | Masseter segmentation from noisy and blurry cone-beam CT (CBCT) images is a challenging issue considering the device-specific image artefacts. In this paper,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1188 |
SubjectTerms | CBCT images domain adaptation Feature extraction generative adversarial network Generators Image generation Image segmentation joint embedding Labeling Muscle segmentation Muscles Shape structure-aware shape preservation |
Title | Masseter Muscle Segmentation from Cone-Beam CT Images using Generative Adversarial Network |
URI | https://ieeexplore.ieee.org/document/8759426 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwED4BU7v0AVXf8tCxhgQ7JF6pikolUCVAQl1QbJ9RVUGrkiz99T0nKX2oQzcrUhzLvvi-s7_7DuBKWKus7CJXxgguE-W4wijhkbBKqlTRz1mofY57dzN5P4_mNbje5sIgYkE-w7ZvFnf59sXk_qisQ9hakUepQz1WqszV2p6nkCuUFJpXF5dhoDrDSX_ouVtkDOV7PwqoFP5jsAejzy-XtJHndp7ptnn_Jcr436HtQ-srU489bH3QAdRwfQi730QGm_A4InzsSS9slG_ISNgEl6sq42jNfHoJo86Q9zGl1pQNV7TFbJgnxC9ZqUrtt0RWlG7epN5g2bgkj7dgNrid3tzxqqICfyKYkPFQGy8OY3o60ZEUWmJAEUooMEQXB8alhIYIcxglpPXbJIGpbhy7NHQUOTpMxRE01jSkY2Ay0T1rlLax9UFWrL2WWOhEN9BSOx2fQNPP0uK1FM1YVBN0-vfjM9jxK1VSYs6hkb3leEHePtOXxTJ_AHEzqgw |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgALjxbxxgMjbpvaaeK1iKqBpkJqK1UsVfyqEGpBNFn49ZyTUB5iYLMixbHsy91n-7vvAK6Y1kLztqFCKUZ5KCwVxg-pz7TgIhH4c-Zqn8NOf8Lvpv60AtfrXBhjTE4-Mw3XzO_y9YvK3FFZE7G1wIiyAZu-wxVFttb6RAWDIcfNeXl16bVEMxp1I8feQnMo3vxRQiWPIL1diD-_XRBHnhtZKhvq_Zcs438Htwf1r1w98rCOQvtQMcsD2PkmM1iDxxgRsqO9kDhboZmQkZkvypyjJXEJJgQ7M7RrEmyNSbRAJ7MijhI_J4UutXOKJC_evEqcyZJhQR-vw6R3O77p07KmAn1CoJBSTyonD6M6MpQ-Z5KbFs6lx4xnbNBSNkE8hKhDCca1c5QIp9pBYBPP4t7RmoQdQnWJQzoCwkPZ0UpIHWi3zQqkUxPzLGu3JJdWBsdQc7M0ey1kM2blBJ38_fgStvrjeDAbRMP7U9h2q1YQZM6gmr5l5hxjfyov8iX_AIe8rVk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+16th+International+Symposium+on+Biomedical+Imaging+%28ISBI+2019%29&rft.atitle=Masseter+Muscle+Segmentation+from+Cone-Beam+CT+Images+using+Generative+Adversarial+Network&rft.au=Zhang%2C+Yungeng&rft.au=Pei%2C+Yuru&rft.au=Qin%2C+Haifang&rft.au=Guo%2C+Yuke&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1188&rft.epage=1192&rft_id=info:doi/10.1109%2FISBI.2019.8759426&rft.externalDocID=8759426 |