Gaussian Mixture Kalman predictive coding of LSFS
Gaussian mixture model (GMM)-based predictive coding of line spectral frequencies (LSFs) has gained wide acceptance. In such coders, each mixture of a GMM can be interpreted as defining a linear predictive transform coder. In this paper we optimize each of these linear predictive transform coders us...
Saved in:
Published in | 2008 IEEE International Conference on Acoustics, Speech and Signal Processing pp. 4777 - 4780 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gaussian mixture model (GMM)-based predictive coding of line spectral frequencies (LSFs) has gained wide acceptance. In such coders, each mixture of a GMM can be interpreted as defining a linear predictive transform coder. In this paper we optimize each of these linear predictive transform coders using Kalman predictive coding techniques to present GMM Kalman predictive coding. In particular, we show how suitable modeling of quantization noise leads to an adaptive a-posteriori GMM that defines a signal-adaptive predictive coder that provides superior coding of LSFs in comparison with the baseline GMM predictive coder. Moreover, we show how running the Kalman predictive coders to convergence can be used to design a stationary predictive coding system which again provides superior coding of LSFs but now with no increase in run-time complexity over the baseline. |
---|---|
AbstractList | Gaussian mixture model (GMM)-based predictive coding of line spectral frequencies (LSFs) has gained wide acceptance. In such coders, each mixture of a GMM can be interpreted as defining a linear predictive transform coder. In this paper we optimize each of these linear predictive transform coders using Kalman predictive coding techniques to present GMM Kalman predictive coding. In particular, we show how suitable modeling of quantization noise leads to an adaptive a-posteriori GMM that defines a signal-adaptive predictive coder that provides superior coding of LSFs in comparison with the baseline GMM predictive coder. Moreover, we show how running the Kalman predictive coders to convergence can be used to design a stationary predictive coding system which again provides superior coding of LSFs but now with no increase in run-time complexity over the baseline. |
Author | Subasingha, S. Vang Andersen, S. Murthi, M.N. |
Author_xml | – sequence: 1 givenname: S. surname: Subasingha fullname: Subasingha, S. organization: Dept. of Electr. & Comput. Eng., Univ. of Miami, Miami, FL – sequence: 2 givenname: M.N. surname: Murthi fullname: Murthi, M.N. organization: Dept. of Electr. & Comput. Eng., Univ. of Miami, Miami, FL – sequence: 3 givenname: S. surname: Vang Andersen fullname: Vang Andersen, S. |
BookMark | eNo1T9tKw0AUXLWCac0X9CU_kLhn9-ztUYqtYkQhCr6VTXIiK21SklT07w1Y52GGYWCYmbNZ27XE2BJ4BsDdzcPqtiheMsG5zVCBNUKdsTmgQAS06M5ZJKRxKTj-fsFiZ-x_JuWMRaAETzWgu2LxMHzyCaikcipisPHHYQi-TZ7C93jsKXn0u_1kDz3VoRrDFyVVV4f2I-maJC_WxTW7bPxuoPikC_a2vntd3af582bamacBjBqnKZo7oQjJKK5FLYRWfCLypUBbEjpdOSWprmpthdbOG2UNWlNaaBqJcsGWf72BiLaHPux9_7M9vZe_3oNJKw |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP.2008.4518725 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1424414849 9781424414840 |
EISSN | 2379-190X |
EndPage | 4780 |
ExternalDocumentID | 4518725 |
Genre | orig-research |
GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-1960925e4e75062d22650226eab248be496c953edcd682669a7587487b81ff343 |
IEDL.DBID | RIE |
ISBN | 9781424414833 1424414830 |
ISSN | 1520-6149 |
IngestDate | Wed Jun 26 19:24:05 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-1960925e4e75062d22650226eab248be496c953edcd682669a7587487b81ff343 |
PageCount | 4 |
ParticipantIDs | ieee_primary_4518725 |
PublicationCentury | 2000 |
PublicationDate | 2008-March |
PublicationDateYYYYMMDD | 2008-03-01 |
PublicationDate_xml | – month: 03 year: 2008 text: 2008-March |
PublicationDecade | 2000 |
PublicationTitle | 2008 IEEE International Conference on Acoustics, Speech and Signal Processing |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2008 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000453595 ssj0008748 |
Score | 1.7209932 |
Snippet | Gaussian mixture model (GMM)-based predictive coding of line spectral frequencies (LSFs) has gained wide acceptance. In such coders, each mixture of a GMM can... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4777 |
SubjectTerms | Code standards Filtering Frequency Gaussian Mixture Models Kalman filtering Kalman filters Noise measurement Predictive coding Predictive models Speech coding State-space methods Vector quantization |
Title | Gaussian Mixture Kalman predictive coding of LSFS |
URI | https://ieeexplore.ieee.org/document/4518725 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEB2SnNpLl6R0x4ce66SyJdk6ltA0XVICbiC3IMkyhDZxSG0o_fqObMdd6KE3yyDkkUHvjWbeDMAF5Sb0Q0pdlgTooHDpucgSiMuIpIZqRIyie8PoiQ8n9H7Kpg24rLUwxpgi-cx07WMRy49Tndursh5lJAw81oRmIESp1arvU5CalBrT6hQOg6JzFi5m3SMqNqIupP9-XeupGvtVOSJyJXp3_esoGpdJltV6PxqvFLgz2IHR5ovLdJOXbp6prv74VczxvybtQudL4eeMa-zag4ZZ7sP2t-KEbSC3Mn-zEktnNH-3cQbnQb4ucLha2-COPSYdndrpTpo4j9Eg6sBkcPPcH7pVgwV3jqwhc4ktN-cxQw3yBu7FSMUYYjo3Unk0VIYKrgXzTaxjjm4IFxK9C9zXQIUkSXzqH0BrmS7NITjKE5KoRHD01G2wVGpER6oZlzhNC3oEbWv8bFXW0JhVdh___foEtsq8DJvrdQqtbJ2bMwT_TJ0Xf_0TAV2i6A |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSLDzC-7cGjBbfd3bZHQ0QQSkgKCTey3W4TolKCbWL89c62pT7iwVu3yWY7m2bn-3bmmwG4oVy5tkupyWIHCQoXlokogZiMCKqoRI-Rd2_wR7w3pU8zNqvBbaWFUUrlyWeqpR_zWH6UyExflbUpI65jsS3YZhpXFGqt6kYFwUmhMi3PYdfJe2fhcpogUW8j60ICYFfVnsqxXRYkIndeu9-5D4JxkWZZrvij9Uruebr74G--uUg4eW5ladiSH7_KOf7XqANofmn8jHHlvQ6hppZHsPetPGEDyKPI3rTI0vAX7zrSYAzEyysOV2sd3tEHpSETPd1IYmMYdIMmTLsPk07PLFssmAvEDalJdME5iymqEDlwK0IwxtCrcyVCi7qhoh6XHrNVJCOORIR7AvkF7qsTuiSObWofQ32ZLNUJGKHlCRLGHkeursOlQqJ_pJJxgdOkR0-hoY2fr4oqGvPS7rO_X1_DTm_iD-fD_mhwDrtFlobO_LqAerrO1CVCgTS8yv-AT8YwpjU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing&rft.atitle=Gaussian+Mixture+Kalman+predictive+coding+of+LSFS&rft.au=Subasingha%2C+S.&rft.au=Murthi%2C+M.N.&rft.au=Vang+Andersen%2C+S.&rft.date=2008-03-01&rft.pub=IEEE&rft.isbn=9781424414833&rft.issn=1520-6149&rft.eissn=2379-190X&rft.spage=4777&rft.epage=4780&rft_id=info:doi/10.1109%2FICASSP.2008.4518725&rft.externalDocID=4518725 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon |