Unsupervised Disaggregation for Non-intrusive Load Monitoring

A method for unsupervised disaggregation of appliance signatures from smart meter data is presented. The primary feature used for unsupervised learning relates to abrupt transitions or magnitude changes in the power waveform. The method consists of a sequence of procedures for appliance signature id...

Full description

Saved in:
Bibliographic Details
Published in2012 Eleventh International Conference on Machine Learning and Applications Vol. 2; pp. 515 - 520
Main Author Pattem, S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2012
Subjects
Online AccessGet full text
ISBN1467346519
9781467346511
DOI10.1109/ICMLA.2012.249

Cover

Abstract A method for unsupervised disaggregation of appliance signatures from smart meter data is presented. The primary feature used for unsupervised learning relates to abrupt transitions or magnitude changes in the power waveform. The method consists of a sequence of procedures for appliance signature identification, and disaggregation using hidden Markov modeling (HMM), and residual analysis. The key contributions are (a) a novel 'segmented' application of the Viterbi algorithm for sequence decoding with the HMM, (b) details of establishing observation and state transition probabilities for the HMM, and (c) procedures for careful handling of low power signatures. Results show that the method is effective for magnitude-based disaggregation, and provide insights for a more complete solution.
AbstractList A method for unsupervised disaggregation of appliance signatures from smart meter data is presented. The primary feature used for unsupervised learning relates to abrupt transitions or magnitude changes in the power waveform. The method consists of a sequence of procedures for appliance signature identification, and disaggregation using hidden Markov modeling (HMM), and residual analysis. The key contributions are (a) a novel 'segmented' application of the Viterbi algorithm for sequence decoding with the HMM, (b) details of establishing observation and state transition probabilities for the HMM, and (c) procedures for careful handling of low power signatures. Results show that the method is effective for magnitude-based disaggregation, and provide insights for a more complete solution.
Author Pattem, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Pattem
  fullname: Pattem, S.
  email: pattem@gmail.com
BookMark eNotzLtOwzAYQGEjQIKWrCwseYGE33d7YKhCgUopLHSunNiOjMCu7LQSbw8STGf6zgJdxBQdQrcYWoxB32-6bb9qCWDSEqbPUKWlAik0ZxpTco4WmAlJmeBYX6GqlA8A-IWCMnaNHnaxHA8un0Jxtn4MxUxTdpOZQ4q1T7l-TbEJcc7HEk6u7pOx9TbFMKcc4nSDLr35LK767xLtntbv3UvTvz1vulXfBCz53GDFGVcWRqW48NSCEXIgILzRA-POjh6c1kKNRkvCMJPeKKYGCZZqr7ikS3T39w3Ouf0hhy-Tv_eCgZBK0R8-SkqT
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLA.2012.249
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: Consulter via IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769549132
0769549136
EndPage 520
ExternalDocumentID 6406788
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-185458d0c8856f3d0a67b206fa9b45edcf0e9968ca9724147fa848b70d39f8573
IEDL.DBID RIE
ISBN 1467346519
9781467346511
IngestDate Wed Aug 27 03:56:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-185458d0c8856f3d0a67b206fa9b45edcf0e9968ca9724147fa848b70d39f8573
PageCount 6
ParticipantIDs ieee_primary_6406788
PublicationCentury 2000
PublicationDate 2012-Dec.
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-Dec.
PublicationDecade 2010
PublicationTitle 2012 Eleventh International Conference on Machine Learning and Applications
PublicationTitleAbbrev icmla
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106344
Score 1.6960716
Snippet A method for unsupervised disaggregation of appliance signatures from smart meter data is presented. The primary feature used for unsupervised learning relates...
SourceID ieee
SourceType Publisher
StartPage 515
SubjectTerms Aggregates
disaggregation
Hidden Markov models
Home appliances
Power demand
Quantization
Smoothing methods
unsupervised machine learning
Viterbi algorithm
Title Unsupervised Disaggregation for Non-intrusive Load Monitoring
URI https://ieeexplore.ieee.org/document/6406788
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09b8IwED0BUyfaQtVveehYh8R2YnvoUNEiWgHqUCQ2ZMc2QpUCErD019dOAq2qDt3iZLF9yT3f5d47gDsrOVUedzF1QmJGtcWaOIlJxuNUSUMqiY3xJBtO2essnTXg_sCFsdaWxWc2Cpflv3yzynchVdbLWPCtoglN_5pVXK3vfIqPbShjJXcr4zS0-JZ7Sad6nNSijUksey_98egxVHaRiAQdzR-tVUpkGbRhvJ9TVVDyEe22Oso_f8k1_nfSx9D95vChtwM6nUDDFqfQ3jdxQPU33YGHabHZrYPH2FiDnpYbtfAh-KI0GPInWjRZFXhZBG6Gd4xotFIGVY4gZAS7MB08v_eHuO6pgJf-oLDFHp5ZKkycC5FmjppYZVyTOHNKapZak7vY-hBI5EpyD-6MOyWY0Dw2VDqRcnoGrWJV2HNAzCa59A8MpT7MkkToVBJlRZ44IxJuL6ATdmO-rmQz5vVGXP59-wqOgjWqSpFraPll2RuP91t9Wxr6C055pjQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844GRpIntxPbAgApVC0nF0ErdKid2qgopqdR24ddjJ2mLEANbPhbbJ9_zne-9A3jQghFpcNchGRcOJYl2EpwJB4fMC6RQuJLYiEfhYELfpsG0AY87LozWuiw-0659LO_yVZFubKqsG1LrW_kBHBrcp0HF1tpnVEx0Qygt2VshI7bJt9iKOtXvfi3b6HuiO-zF0bOt7cIutkqaP5qrlNjSb0G8HVVVUvLpbtaJm379Emz877BPoLNn8aGPHT6dQkPnZ9DatnFA9a5uw9MkX22W1mestEIvi5WcmyB8XpoMmTMtGhW5s8gtO8O4RhQVUqHKFdicYAcm_ddxb-DUXRWchTkqrB0D0DTgyks5D8KMKE-GLMFemEmR0ECrNPO0CYJ4KgUz8E5ZJjnlCfMUERkPGDmHZl7k-gIQ1X4qzA9FiAm0BOZJILDUPPUzxX2mL6FtV2O2rIQzZvVCXP39-R6OBuM4mkXD0fs1HFvLVHUjN9A0U9S3Bv3XyV1p9G833qmB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+Eleventh+International+Conference+on+Machine+Learning+and+Applications&rft.atitle=Unsupervised+Disaggregation+for+Non-intrusive+Load+Monitoring&rft.au=Pattem%2C+S.&rft.date=2012-12-01&rft.pub=IEEE&rft.isbn=9781467346511&rft.volume=2&rft.spage=515&rft.epage=520&rft_id=info:doi/10.1109%2FICMLA.2012.249&rft.externalDocID=6406788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/sc.gif&client=summon&freeimage=true