Unsupervised Disaggregation for Non-intrusive Load Monitoring
A method for unsupervised disaggregation of appliance signatures from smart meter data is presented. The primary feature used for unsupervised learning relates to abrupt transitions or magnitude changes in the power waveform. The method consists of a sequence of procedures for appliance signature id...
Saved in:
Published in | 2012 Eleventh International Conference on Machine Learning and Applications Vol. 2; pp. 515 - 520 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2012
|
Subjects | |
Online Access | Get full text |
ISBN | 1467346519 9781467346511 |
DOI | 10.1109/ICMLA.2012.249 |
Cover
Abstract | A method for unsupervised disaggregation of appliance signatures from smart meter data is presented. The primary feature used for unsupervised learning relates to abrupt transitions or magnitude changes in the power waveform. The method consists of a sequence of procedures for appliance signature identification, and disaggregation using hidden Markov modeling (HMM), and residual analysis. The key contributions are (a) a novel 'segmented' application of the Viterbi algorithm for sequence decoding with the HMM, (b) details of establishing observation and state transition probabilities for the HMM, and (c) procedures for careful handling of low power signatures. Results show that the method is effective for magnitude-based disaggregation, and provide insights for a more complete solution. |
---|---|
AbstractList | A method for unsupervised disaggregation of appliance signatures from smart meter data is presented. The primary feature used for unsupervised learning relates to abrupt transitions or magnitude changes in the power waveform. The method consists of a sequence of procedures for appliance signature identification, and disaggregation using hidden Markov modeling (HMM), and residual analysis. The key contributions are (a) a novel 'segmented' application of the Viterbi algorithm for sequence decoding with the HMM, (b) details of establishing observation and state transition probabilities for the HMM, and (c) procedures for careful handling of low power signatures. Results show that the method is effective for magnitude-based disaggregation, and provide insights for a more complete solution. |
Author | Pattem, S. |
Author_xml | – sequence: 1 givenname: S. surname: Pattem fullname: Pattem, S. email: pattem@gmail.com |
BookMark | eNotzLtOwzAYQGEjQIKWrCwseYGE33d7YKhCgUopLHSunNiOjMCu7LQSbw8STGf6zgJdxBQdQrcYWoxB32-6bb9qCWDSEqbPUKWlAik0ZxpTco4WmAlJmeBYX6GqlA8A-IWCMnaNHnaxHA8un0Jxtn4MxUxTdpOZQ4q1T7l-TbEJcc7HEk6u7pOx9TbFMKcc4nSDLr35LK767xLtntbv3UvTvz1vulXfBCz53GDFGVcWRqW48NSCEXIgILzRA-POjh6c1kKNRkvCMJPeKKYGCZZqr7ikS3T39w3Ouf0hhy-Tv_eCgZBK0R8-SkqT |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLA.2012.249 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: Consulter via IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9780769549132 0769549136 |
EndPage | 520 |
ExternalDocumentID | 6406788 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-185458d0c8856f3d0a67b206fa9b45edcf0e9968ca9724147fa848b70d39f8573 |
IEDL.DBID | RIE |
ISBN | 1467346519 9781467346511 |
IngestDate | Wed Aug 27 03:56:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-185458d0c8856f3d0a67b206fa9b45edcf0e9968ca9724147fa848b70d39f8573 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6406788 |
PublicationCentury | 2000 |
PublicationDate | 2012-Dec. |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2012 Eleventh International Conference on Machine Learning and Applications |
PublicationTitleAbbrev | icmla |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001106344 |
Score | 1.6960716 |
Snippet | A method for unsupervised disaggregation of appliance signatures from smart meter data is presented. The primary feature used for unsupervised learning relates... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 515 |
SubjectTerms | Aggregates disaggregation Hidden Markov models Home appliances Power demand Quantization Smoothing methods unsupervised machine learning Viterbi algorithm |
Title | Unsupervised Disaggregation for Non-intrusive Load Monitoring |
URI | https://ieeexplore.ieee.org/document/6406788 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09b8IwED0BUyfaQtVveehYh8R2YnvoUNEiWgHqUCQ2ZMc2QpUCErD019dOAq2qDt3iZLF9yT3f5d47gDsrOVUedzF1QmJGtcWaOIlJxuNUSUMqiY3xJBtO2essnTXg_sCFsdaWxWc2Cpflv3yzynchVdbLWPCtoglN_5pVXK3vfIqPbShjJXcr4zS0-JZ7Sad6nNSijUksey_98egxVHaRiAQdzR-tVUpkGbRhvJ9TVVDyEe22Oso_f8k1_nfSx9D95vChtwM6nUDDFqfQ3jdxQPU33YGHabHZrYPH2FiDnpYbtfAh-KI0GPInWjRZFXhZBG6Gd4xotFIGVY4gZAS7MB08v_eHuO6pgJf-oLDFHp5ZKkycC5FmjppYZVyTOHNKapZak7vY-hBI5EpyD-6MOyWY0Dw2VDqRcnoGrWJV2HNAzCa59A8MpT7MkkToVBJlRZ44IxJuL6ATdmO-rmQz5vVGXP59-wqOgjWqSpFraPll2RuP91t9Wxr6C055pjQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844GRpIntxPbAgApVC0nF0ErdKid2qgopqdR24ddjJ2mLEANbPhbbJ9_zne-9A3jQghFpcNchGRcOJYl2EpwJB4fMC6RQuJLYiEfhYELfpsG0AY87LozWuiw-0659LO_yVZFubKqsG1LrW_kBHBrcp0HF1tpnVEx0Qygt2VshI7bJt9iKOtXvfi3b6HuiO-zF0bOt7cIutkqaP5qrlNjSb0G8HVVVUvLpbtaJm379Emz877BPoLNn8aGPHT6dQkPnZ9DatnFA9a5uw9MkX22W1mestEIvi5WcmyB8XpoMmTMtGhW5s8gtO8O4RhQVUqHKFdicYAcm_ddxb-DUXRWchTkqrB0D0DTgyks5D8KMKE-GLMFemEmR0ECrNPO0CYJ4KgUz8E5ZJjnlCfMUERkPGDmHZl7k-gIQ1X4qzA9FiAm0BOZJILDUPPUzxX2mL6FtV2O2rIQzZvVCXP39-R6OBuM4mkXD0fs1HFvLVHUjN9A0U9S3Bv3XyV1p9G833qmB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+Eleventh+International+Conference+on+Machine+Learning+and+Applications&rft.atitle=Unsupervised+Disaggregation+for+Non-intrusive+Load+Monitoring&rft.au=Pattem%2C+S.&rft.date=2012-12-01&rft.pub=IEEE&rft.isbn=9781467346511&rft.volume=2&rft.spage=515&rft.epage=520&rft_id=info:doi/10.1109%2FICMLA.2012.249&rft.externalDocID=6406788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/sc.gif&client=summon&freeimage=true |