Sparse Autoencoder-Based Feature Transfer Learning for Speech Emotion Recognition
In speech emotion recognition, training and test data used for system development usually tend to fit each other perfectly, but further 'similar' data may be available. Transfer learning helps to exploit such similar data for training despite the inherent dissimilarities in order to boost...
Saved in:
Published in | International Conference on Affective Computing and Intelligent Interaction and workshops pp. 511 - 516 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In speech emotion recognition, training and test data used for system development usually tend to fit each other perfectly, but further 'similar' data may be available. Transfer learning helps to exploit such similar data for training despite the inherent dissimilarities in order to boost a recogniser's performance. In this context, this paper presents a sparse auto encoder method for feature transfer learning for speech emotion recognition. In our proposed method, a common emotion-specific mapping rule is learnt from a small set of labelled data in a target domain. Then, newly reconstructed data are obtained by applying this rule on the emotion-specific data in a different domain. The experimental results evaluated on six standard databases show that our approach significantly improves the performance relative to learning each source domain independently. |
---|---|
AbstractList | In speech emotion recognition, training and test data used for system development usually tend to fit each other perfectly, but further 'similar' data may be available. Transfer learning helps to exploit such similar data for training despite the inherent dissimilarities in order to boost a recogniser's performance. In this context, this paper presents a sparse auto encoder method for feature transfer learning for speech emotion recognition. In our proposed method, a common emotion-specific mapping rule is learnt from a small set of labelled data in a target domain. Then, newly reconstructed data are obtained by applying this rule on the emotion-specific data in a different domain. The experimental results evaluated on six standard databases show that our approach significantly improves the performance relative to learning each source domain independently. |
Author | Marchi, Erik Schuller, Bjorn Zixing Zhang Jun Deng |
Author_xml | – sequence: 1 surname: Jun Deng fullname: Jun Deng email: jun.deng@tum.de organization: Machine Intell. & Signal Process. Group, Tech. Univ. Munchen, Munich, Germany – sequence: 2 surname: Zixing Zhang fullname: Zixing Zhang email: zixing.zhang@tum.de organization: Machine Intell. & Signal Process. Group, Tech. Univ. Munchen, Munich, Germany – sequence: 3 givenname: Erik surname: Marchi fullname: Marchi, Erik email: erik.marchi@tum.de organization: Machine Intell. & Signal Process. Group, Tech. Univ. Munchen, Munich, Germany – sequence: 4 givenname: Bjorn surname: Schuller fullname: Schuller, Bjorn email: bjoern.schuller@uni-passau.de organization: Inst. for Sensor Syst., Univ. of Passau, Passau, Germany |
BookMark | eNotzM1OAjEUQOGaYCIiO3du-gKDtz_T3lkiAZyExCjsyWW4xSbSks6w8O2N0dX5VudejFJOLMSjgplS0DzPF20706DMrIEbMW08gndNXYNFGImxVrWrUIG5E9O-jwfQzjtjtR6L9-2FSs9yfh0ypy4fuVQv1PNRrpiGa2G5K5T6wEVumEqK6SRDLnJ7Ye4-5fKch5iT_OAun1L89YO4DfTV8_S_E7FbLXeL12rztm4X800Vla-HSjkkQtIdGt953QF6cLXyGPCI4FwgtAc-GMtEdSDjQnDoFRGQtZbMRDz9bSMz7y8lnql8751DZVGZH_vrUPA |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ACII.2013.90 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9780769550480 0769550487 |
EndPage | 516 |
ExternalDocumentID | 6681481 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-168aa8a2c837c72c087065178f8d8066fa84beb34eaa5fa36ff6871aa0a444a3 |
IEDL.DBID | RIE |
ISSN | 2156-8103 |
IngestDate | Wed Aug 27 04:03:46 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-168aa8a2c837c72c087065178f8d8066fa84beb34eaa5fa36ff6871aa0a444a3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6681481 |
PublicationCentury | 2000 |
PublicationDate | 2013-Sept. |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-Sept. |
PublicationDecade | 2010 |
PublicationTitle | International Conference on Affective Computing and Intelligent Interaction and workshops |
PublicationTitleAbbrev | acii |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026763422 ssj0001950885 |
Score | 2.075504 |
Snippet | In speech emotion recognition, training and test data used for system development usually tend to fit each other perfectly, but further 'similar' data may be... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 511 |
SubjectTerms | Acoustics deep neural networks Emotion recognition sparse autoencoder Speech speech emotion recognition Speech recognition Training transfer learning |
Title | Sparse Autoencoder-Based Feature Transfer Learning for Speech Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/6681481 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhJmg_HccZStWqRioAWqVvlOGdASElVJQu_nrOTFAkxsEUZIuuc8713fndHyK1OUpn4xpF4GDuIiFP0OQEOk9xDIse0kiYPuXjks1f2sI7WHXK3r4UBACs-A9c82rv8rFCVSZUNOReI3pHrHCBxq2u12n8n4OgorGlFZ_MrdrypUTBiUOOO8L1wr3tPhqPxfG50XaFrD-OfuSo2rEx7ZNEuqFaTfLpVmbrq61evxv-u-IgMfgr46NM-NB2TDuQnpNdOcKCNQ_fJ83KLxBboqCoL09Eyg51zj3EtowYaVjugNpbhJ2nTiPWNIsqlyy2AeqeTegYQfWlVSEU-IKvpZDWeOc2QBecDkUPp-FxIKWSgkKmqOFCevfj0Y6FFJhCPaClYioybgZSRliHXmiPJktKTjDEZnpJuXuRwRmgkuMoSMKbPmI5kooTC7Y7Bk0GqlD4nfWOgzbZuo7FpbHPx9-tLchjYyRNGznVFuuWugmuM_2V6Yzf-G7tfrkY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOjJDzB-uwePtpR2u2yPSCCgQFQw4Ua221k1JoWQ9uKvd3bbQmI8eGt6aDbTnZ03s2_mEXKno1hGbeNIPOg4iIhj9DkBDpPcw0SOaSVNHXIy5cM39rgIFzVyv-2FAQBLPgPXPNq7_GSlclMqa3EuEL1jrrOHcT_0i26tavf4HF2FlcPobIXFCpwaDiOGNe6Ithdsme9Rq9sbjQyzK3DtcbxTVrGBZXBIJtWSCj7Jl5tnsau-f01r_O-aj0hz18JHn7fB6ZjUID0hh5WGAy1dukFeZmtMbYF282xlZlomsHEeMLIl1IDDfAPURjP8JC1Hsb5TxLl0tgZQH7RfqADR14qHtEqbZD7oz3tDp5RZcD4RO2ROmwsphfQV5qqq4yvPXn22O0KLRCAi0VKwGHNuBlKGWgZca45plpSeZIzJ4JTU01UKZ4SGgqskAmP6hOlQRkoo_OEd8KQfK6XPScMYaLkuBmksS9tc_P36luwP55PxcjyaPl2SA9_qUBhy1xWpZ5scrhENZPGN3QQ_BcKxkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Sparse+Autoencoder-Based+Feature+Transfer+Learning+for+Speech+Emotion+Recognition&rft.au=Jun+Deng&rft.au=Zixing+Zhang&rft.au=Marchi%2C+Erik&rft.au=Schuller%2C+Bjorn&rft.date=2013-09-01&rft.pub=IEEE&rft.issn=2156-8103&rft.spage=511&rft.epage=516&rft_id=info:doi/10.1109%2FACII.2013.90&rft.externalDocID=6681481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-8103&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-8103&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-8103&client=summon |