Sparse Autoencoder-Based Feature Transfer Learning for Speech Emotion Recognition

In speech emotion recognition, training and test data used for system development usually tend to fit each other perfectly, but further 'similar' data may be available. Transfer learning helps to exploit such similar data for training despite the inherent dissimilarities in order to boost...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Affective Computing and Intelligent Interaction and workshops pp. 511 - 516
Main Authors Jun Deng, Zixing Zhang, Marchi, Erik, Schuller, Bjorn
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In speech emotion recognition, training and test data used for system development usually tend to fit each other perfectly, but further 'similar' data may be available. Transfer learning helps to exploit such similar data for training despite the inherent dissimilarities in order to boost a recogniser's performance. In this context, this paper presents a sparse auto encoder method for feature transfer learning for speech emotion recognition. In our proposed method, a common emotion-specific mapping rule is learnt from a small set of labelled data in a target domain. Then, newly reconstructed data are obtained by applying this rule on the emotion-specific data in a different domain. The experimental results evaluated on six standard databases show that our approach significantly improves the performance relative to learning each source domain independently.
AbstractList In speech emotion recognition, training and test data used for system development usually tend to fit each other perfectly, but further 'similar' data may be available. Transfer learning helps to exploit such similar data for training despite the inherent dissimilarities in order to boost a recogniser's performance. In this context, this paper presents a sparse auto encoder method for feature transfer learning for speech emotion recognition. In our proposed method, a common emotion-specific mapping rule is learnt from a small set of labelled data in a target domain. Then, newly reconstructed data are obtained by applying this rule on the emotion-specific data in a different domain. The experimental results evaluated on six standard databases show that our approach significantly improves the performance relative to learning each source domain independently.
Author Marchi, Erik
Schuller, Bjorn
Zixing Zhang
Jun Deng
Author_xml – sequence: 1
  surname: Jun Deng
  fullname: Jun Deng
  email: jun.deng@tum.de
  organization: Machine Intell. & Signal Process. Group, Tech. Univ. Munchen, Munich, Germany
– sequence: 2
  surname: Zixing Zhang
  fullname: Zixing Zhang
  email: zixing.zhang@tum.de
  organization: Machine Intell. & Signal Process. Group, Tech. Univ. Munchen, Munich, Germany
– sequence: 3
  givenname: Erik
  surname: Marchi
  fullname: Marchi, Erik
  email: erik.marchi@tum.de
  organization: Machine Intell. & Signal Process. Group, Tech. Univ. Munchen, Munich, Germany
– sequence: 4
  givenname: Bjorn
  surname: Schuller
  fullname: Schuller, Bjorn
  email: bjoern.schuller@uni-passau.de
  organization: Inst. for Sensor Syst., Univ. of Passau, Passau, Germany
BookMark eNotzM1OAjEUQOGaYCIiO3du-gKDtz_T3lkiAZyExCjsyWW4xSbSks6w8O2N0dX5VudejFJOLMSjgplS0DzPF20706DMrIEbMW08gndNXYNFGImxVrWrUIG5E9O-jwfQzjtjtR6L9-2FSs9yfh0ypy4fuVQv1PNRrpiGa2G5K5T6wEVumEqK6SRDLnJ7Ye4-5fKch5iT_OAun1L89YO4DfTV8_S_E7FbLXeL12rztm4X800Vla-HSjkkQtIdGt953QF6cLXyGPCI4FwgtAc-GMtEdSDjQnDoFRGQtZbMRDz9bSMz7y8lnql8751DZVGZH_vrUPA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACII.2013.90
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769550480
0769550487
EndPage 516
ExternalDocumentID 6681481
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-168aa8a2c837c72c087065178f8d8066fa84beb34eaa5fa36ff6871aa0a444a3
IEDL.DBID RIE
ISSN 2156-8103
IngestDate Wed Aug 27 04:03:46 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-168aa8a2c837c72c087065178f8d8066fa84beb34eaa5fa36ff6871aa0a444a3
PageCount 6
ParticipantIDs ieee_primary_6681481
PublicationCentury 2000
PublicationDate 2013-Sept.
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-Sept.
PublicationDecade 2010
PublicationTitle International Conference on Affective Computing and Intelligent Interaction and workshops
PublicationTitleAbbrev acii
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026763422
ssj0001950885
Score 2.075504
Snippet In speech emotion recognition, training and test data used for system development usually tend to fit each other perfectly, but further 'similar' data may be...
SourceID ieee
SourceType Publisher
StartPage 511
SubjectTerms Acoustics
deep neural networks
Emotion recognition
sparse autoencoder
Speech
speech emotion recognition
Speech recognition
Training
transfer learning
Title Sparse Autoencoder-Based Feature Transfer Learning for Speech Emotion Recognition
URI https://ieeexplore.ieee.org/document/6681481
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhJmg_HccZStWqRioAWqVvlOGdASElVJQu_nrOTFAkxsEUZIuuc8713fndHyK1OUpn4xpF4GDuIiFP0OQEOk9xDIse0kiYPuXjks1f2sI7WHXK3r4UBACs-A9c82rv8rFCVSZUNOReI3pHrHCBxq2u12n8n4OgorGlFZ_MrdrypUTBiUOOO8L1wr3tPhqPxfG50XaFrD-OfuSo2rEx7ZNEuqFaTfLpVmbrq61evxv-u-IgMfgr46NM-NB2TDuQnpNdOcKCNQ_fJ83KLxBboqCoL09Eyg51zj3EtowYaVjugNpbhJ2nTiPWNIsqlyy2AeqeTegYQfWlVSEU-IKvpZDWeOc2QBecDkUPp-FxIKWSgkKmqOFCevfj0Y6FFJhCPaClYioybgZSRliHXmiPJktKTjDEZnpJuXuRwRmgkuMoSMKbPmI5kooTC7Y7Bk0GqlD4nfWOgzbZuo7FpbHPx9-tLchjYyRNGznVFuuWugmuM_2V6Yzf-G7tfrkY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOjJDzB-uwePtpR2u2yPSCCgQFQw4Ua221k1JoWQ9uKvd3bbQmI8eGt6aDbTnZ03s2_mEXKno1hGbeNIPOg4iIhj9DkBDpPcw0SOaSVNHXIy5cM39rgIFzVyv-2FAQBLPgPXPNq7_GSlclMqa3EuEL1jrrOHcT_0i26tavf4HF2FlcPobIXFCpwaDiOGNe6Ithdsme9Rq9sbjQyzK3DtcbxTVrGBZXBIJtWSCj7Jl5tnsau-f01r_O-aj0hz18JHn7fB6ZjUID0hh5WGAy1dukFeZmtMbYF282xlZlomsHEeMLIl1IDDfAPURjP8JC1Hsb5TxLl0tgZQH7RfqADR14qHtEqbZD7oz3tDp5RZcD4RO2ROmwsphfQV5qqq4yvPXn22O0KLRCAi0VKwGHNuBlKGWgZca45plpSeZIzJ4JTU01UKZ4SGgqskAmP6hOlQRkoo_OEd8KQfK6XPScMYaLkuBmksS9tc_P36luwP55PxcjyaPl2SA9_qUBhy1xWpZ5scrhENZPGN3QQ_BcKxkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Sparse+Autoencoder-Based+Feature+Transfer+Learning+for+Speech+Emotion+Recognition&rft.au=Jun+Deng&rft.au=Zixing+Zhang&rft.au=Marchi%2C+Erik&rft.au=Schuller%2C+Bjorn&rft.date=2013-09-01&rft.pub=IEEE&rft.issn=2156-8103&rft.spage=511&rft.epage=516&rft_id=info:doi/10.1109%2FACII.2013.90&rft.externalDocID=6681481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-8103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-8103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-8103&client=summon