Graph mining meets the Semantic Web
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying,...
Saved in:
Published in | 2015 31st IEEE International Conference on Data Engineering Workshops pp. 53 - 58 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluate the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface. |
---|---|
AbstractList | The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluate the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface. |
Author | Seung-Hwan Lim Lee, Sangkeun Sukumar, Sreenivas R. |
Author_xml | – sequence: 1 givenname: Sangkeun surname: Lee fullname: Lee, Sangkeun email: lees4@ornl.gov organization: Comput. Sci. & Eng. Div., Oak Ridge Nat. Lab., Oak Ridge, TN, USA – sequence: 2 givenname: Sreenivas R. surname: Sukumar fullname: Sukumar, Sreenivas R. email: sukumarsr@ornl.gov organization: Comput. Sci. & Eng. Div., Oak Ridge Nat. Lab., Oak Ridge, TN, USA – sequence: 3 surname: Seung-Hwan Lim fullname: Seung-Hwan Lim email: lims1@ornl.gov organization: Comput. Sci. & Eng. Div., Oak Ridge Nat. Lab., Oak Ridge, TN, USA |
BookMark | eNotz71OwzAUQGEjgQSUvAAslpgTfP0TX48olFKpEkOLOlaOfU2NiKmSLLw9A53O9knnll2Wn0KM3YNoAIR7Wncvy30jBZjGgnRG6wtWOYugrXOotcRrVk3TlxACXGuxxRv2uBr96ciHXHL55APRPPH5SHxLgy9zDnxP_R27Sv57ourcBft4Xe66t3rzvlp3z5s6gzVzDSqihqBCL_s-KkserUkJrDWqTUE6oQOK5BFbk4KPwpDTUagYVR9S9GrBHv7dTESH05gHP_4ezivqDyx0P_I |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICDEW.2015.7129544 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781479984428 1479984426 |
EndPage | 58 |
ExternalDocumentID | 7129544 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-13d841c3cb2bbd37ea875ff177536fc2904c80fa8865fcad05e94d03dd3bcfda3 |
IEDL.DBID | RIE |
IngestDate | Wed Dec 20 05:19:23 EST 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-13d841c3cb2bbd37ea875ff177536fc2904c80fa8865fcad05e94d03dd3bcfda3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7129544 |
PublicationCentury | 2000 |
PublicationDate | 2015-April |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-April |
PublicationDecade | 2010 |
PublicationTitle | 2015 31st IEEE International Conference on Data Engineering Workshops |
PublicationTitleAbbrev | ICDEW |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001967868 |
Score | 1.9970365 |
Snippet | The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 53 |
SubjectTerms | Algorithm design and analysis Communities Data mining Database languages Resource description framework Software algorithms |
Title | Graph mining meets the Semantic Web |
URI | https://ieeexplore.ieee.org/document/7129544 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2AkydUMH6niR5lKbvdbXtGEE0wJkrgRtrpNCEGMLpc_PW2uwtG48Fb06RpZ5p2Ztp58wi5ZiCtBH-QJOepD1A462grlG9ZcM77_y4JAOfxYzaa8IdZOquRmx0WBhGL5DOMQrP4y7dr2ISnsq7ohV8pXid1oVSJ1fp-T1H-2s3kFhfDVPe-fzuYhuStNKoG_mBQKQzIsEnG26nLvJHXaJObCD5_VWX879r2SfsbqkefdkbogNRwdUiaW64GWh3dFrm6C5Wp6bLgg6BLxPyDet-PPuPS63YBdIqmTSbDwUt_1KkIEjoLb_UDjbyVvAcJmNgYmwjUPvrwGhY-BskcxIpxkMxpKbPUgbYsRcUtS6xNDDirkyPSWK1XeEyo0yaFEIwJhxyZkjEIHTu_bSrTiYYT0goyz9_KGhjzStzTv7vPyF7Qe5nhck4a-fsGL7zxzs1lsWtfzjyZYg |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHvSECsa3TfQoS9nt7nbPiIICMRECN9JO24QYwOhy8dfb7i4QjQdvTZOmj8l0Ztr55gO4pcgVR6tInLHQBiiM1oWKE9tSaIz1_03gAM79QdQZsadJOCnB3QYLo7XOks-055rZX75a4so9lTXipvuVYjuwa_1qHuVore2LSmIv3oivkTE0aXRb9-2xS98KvWLoDw6VzIQ8VKC_njzPHHnzVqn08OtXXcb_ru4AaluwHnnZmKFDKOnFEVTWbA2kUN4q3Dy62tRknjFCkLnW6Sex3h951XN7ujMkYy1rMHpoD1udekGRUJ9Zu--I5BVnTQxQ-lKqINbCxh_2jGMbhUQG_YQy5NQIzqPQoFA01AlTNFAqkGiUCI6hvFgu9AkQI2SILhyLjWaaJtzHWPjGCi6JRCDwFKpuz9P3vArGtNju2d_d17DXGfZ701538HwO-04Geb7LBZTTj5W-tKY8lVeZBL8BBnqcrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+31st+IEEE+International+Conference+on+Data+Engineering+Workshops&rft.atitle=Graph+mining+meets+the+Semantic+Web&rft.au=Lee%2C+Sangkeun&rft.au=Sukumar%2C+Sreenivas+R.&rft.au=Seung-Hwan+Lim&rft.date=2015-04-01&rft.pub=IEEE&rft.spage=53&rft.epage=58&rft_id=info:doi/10.1109%2FICDEW.2015.7129544&rft.externalDocID=7129544 |