Graph mining meets the Semantic Web

The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying,...

Full description

Saved in:
Bibliographic Details
Published in2015 31st IEEE International Conference on Data Engineering Workshops pp. 53 - 58
Main Authors Lee, Sangkeun, Sukumar, Sreenivas R., Seung-Hwan Lim
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluate the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.
AbstractList The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluate the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.
Author Seung-Hwan Lim
Lee, Sangkeun
Sukumar, Sreenivas R.
Author_xml – sequence: 1
  givenname: Sangkeun
  surname: Lee
  fullname: Lee, Sangkeun
  email: lees4@ornl.gov
  organization: Comput. Sci. & Eng. Div., Oak Ridge Nat. Lab., Oak Ridge, TN, USA
– sequence: 2
  givenname: Sreenivas R.
  surname: Sukumar
  fullname: Sukumar, Sreenivas R.
  email: sukumarsr@ornl.gov
  organization: Comput. Sci. & Eng. Div., Oak Ridge Nat. Lab., Oak Ridge, TN, USA
– sequence: 3
  surname: Seung-Hwan Lim
  fullname: Seung-Hwan Lim
  email: lims1@ornl.gov
  organization: Comput. Sci. & Eng. Div., Oak Ridge Nat. Lab., Oak Ridge, TN, USA
BookMark eNotz71OwzAUQGEjgQSUvAAslpgTfP0TX48olFKpEkOLOlaOfU2NiKmSLLw9A53O9knnll2Wn0KM3YNoAIR7Wncvy30jBZjGgnRG6wtWOYugrXOotcRrVk3TlxACXGuxxRv2uBr96ciHXHL55APRPPH5SHxLgy9zDnxP_R27Sv57ourcBft4Xe66t3rzvlp3z5s6gzVzDSqihqBCL_s-KkserUkJrDWqTUE6oQOK5BFbk4KPwpDTUagYVR9S9GrBHv7dTESH05gHP_4ezivqDyx0P_I
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDEW.2015.7129544
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479984428
1479984426
EndPage 58
ExternalDocumentID 7129544
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-13d841c3cb2bbd37ea875ff177536fc2904c80fa8865fcad05e94d03dd3bcfda3
IEDL.DBID RIE
IngestDate Wed Dec 20 05:19:23 EST 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-13d841c3cb2bbd37ea875ff177536fc2904c80fa8865fcad05e94d03dd3bcfda3
PageCount 6
ParticipantIDs ieee_primary_7129544
PublicationCentury 2000
PublicationDate 2015-April
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-April
PublicationDecade 2010
PublicationTitle 2015 31st IEEE International Conference on Data Engineering Workshops
PublicationTitleAbbrev ICDEW
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001967868
Score 1.9970365
Snippet The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free...
SourceID ieee
SourceType Publisher
StartPage 53
SubjectTerms Algorithm design and analysis
Communities
Data mining
Database languages
Resource description framework
Software algorithms
Title Graph mining meets the Semantic Web
URI https://ieeexplore.ieee.org/document/7129544
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2AkydUMH6niR5lKbvdbXtGEE0wJkrgRtrpNCEGMLpc_PW2uwtG48Fb06RpZ5p2Ztp58wi5ZiCtBH-QJOepD1A462grlG9ZcM77_y4JAOfxYzaa8IdZOquRmx0WBhGL5DOMQrP4y7dr2ISnsq7ohV8pXid1oVSJ1fp-T1H-2s3kFhfDVPe-fzuYhuStNKoG_mBQKQzIsEnG26nLvJHXaJObCD5_VWX879r2SfsbqkefdkbogNRwdUiaW64GWh3dFrm6C5Wp6bLgg6BLxPyDet-PPuPS63YBdIqmTSbDwUt_1KkIEjoLb_UDjbyVvAcJmNgYmwjUPvrwGhY-BskcxIpxkMxpKbPUgbYsRcUtS6xNDDirkyPSWK1XeEyo0yaFEIwJhxyZkjEIHTu_bSrTiYYT0goyz9_KGhjzStzTv7vPyF7Qe5nhck4a-fsGL7zxzs1lsWtfzjyZYg
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHvSECsa3TfQoS9nt7nbPiIICMRECN9JO24QYwOhy8dfb7i4QjQdvTZOmj8l0Ztr55gO4pcgVR6tInLHQBiiM1oWKE9tSaIz1_03gAM79QdQZsadJOCnB3QYLo7XOks-055rZX75a4so9lTXipvuVYjuwa_1qHuVore2LSmIv3oivkTE0aXRb9-2xS98KvWLoDw6VzIQ8VKC_njzPHHnzVqn08OtXXcb_ru4AaluwHnnZmKFDKOnFEVTWbA2kUN4q3Dy62tRknjFCkLnW6Sex3h951XN7ujMkYy1rMHpoD1udekGRUJ9Zu--I5BVnTQxQ-lKqINbCxh_2jGMbhUQG_YQy5NQIzqPQoFA01AlTNFAqkGiUCI6hvFgu9AkQI2SILhyLjWaaJtzHWPjGCi6JRCDwFKpuz9P3vArGtNju2d_d17DXGfZ701538HwO-04Geb7LBZTTj5W-tKY8lVeZBL8BBnqcrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+31st+IEEE+International+Conference+on+Data+Engineering+Workshops&rft.atitle=Graph+mining+meets+the+Semantic+Web&rft.au=Lee%2C+Sangkeun&rft.au=Sukumar%2C+Sreenivas+R.&rft.au=Seung-Hwan+Lim&rft.date=2015-04-01&rft.pub=IEEE&rft.spage=53&rft.epage=58&rft_id=info:doi/10.1109%2FICDEW.2015.7129544&rft.externalDocID=7129544