Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study
We demonstrate an end-to-end brain-inspired hyperdimensional (HD) computing nanosystem, effective for cognitive tasks such as language recognition, using heterogeneous integration of multiple emerging nanotechnologies. It uses monolithic 3D integration of carbon nanotube field-effect transistors (CN...
Saved in:
Published in | Digest of technical papers - IEEE International Solid-State Circuits Conference pp. 492 - 494 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2376-8606 |
DOI | 10.1109/ISSCC.2018.8310399 |
Cover
Loading…
Abstract | We demonstrate an end-to-end brain-inspired hyperdimensional (HD) computing nanosystem, effective for cognitive tasks such as language recognition, using heterogeneous integration of multiple emerging nanotechnologies. It uses monolithic 3D integration of carbon nanotube field-effect transistors (CNFETs, an emerging logic technology with significant energy-delay product (EDP) benefit vs. silicon CMOS [1]) and Resistive RAM (RRAM, an emerging memory that promises dense non-volatile and analog storage [2]). Due to their low fabrication temperature (<;250°C), CNFETs and RRAM naturally enable monolithic 3D integration with fine-grained and dense vertical connections (exceeding various chip stacking and packaging approaches) between computation and storage layers using back-end-of-line inter-layer vias [3]. We exploit RRAM and CNFETs to create area-and energy-efficient circuits for HD computing: approximate accumulation circuits using gradual RRAM reset operation (in addition to RRAM single-bit storage) and random projection circuits that embrace inherent variations in RRAM and CNFETs. Our results demonstrate: 1. pairwise classification of 21 European languages with measured accuracy of up to 98% on >20,000 sentences (6.4 million characters) per language pair. 2. One-shot learning (i.e., learning from few examples) using one text sample (~100,000 characters) per language. 3. Resilient operation (98% accuracy) despite 78% hardware errors (circuit outputs stuck at 0 or 1). Our HD nanosystem consists of 1,952 CNFETs integrated with 224 RRAM cells. |
---|---|
AbstractList | We demonstrate an end-to-end brain-inspired hyperdimensional (HD) computing nanosystem, effective for cognitive tasks such as language recognition, using heterogeneous integration of multiple emerging nanotechnologies. It uses monolithic 3D integration of carbon nanotube field-effect transistors (CNFETs, an emerging logic technology with significant energy-delay product (EDP) benefit vs. silicon CMOS [1]) and Resistive RAM (RRAM, an emerging memory that promises dense non-volatile and analog storage [2]). Due to their low fabrication temperature (<;250°C), CNFETs and RRAM naturally enable monolithic 3D integration with fine-grained and dense vertical connections (exceeding various chip stacking and packaging approaches) between computation and storage layers using back-end-of-line inter-layer vias [3]. We exploit RRAM and CNFETs to create area-and energy-efficient circuits for HD computing: approximate accumulation circuits using gradual RRAM reset operation (in addition to RRAM single-bit storage) and random projection circuits that embrace inherent variations in RRAM and CNFETs. Our results demonstrate: 1. pairwise classification of 21 European languages with measured accuracy of up to 98% on >20,000 sentences (6.4 million characters) per language pair. 2. One-shot learning (i.e., learning from few examples) using one text sample (~100,000 characters) per language. 3. Resilient operation (98% accuracy) despite 78% hardware errors (circuit outputs stuck at 0 or 1). Our HD nanosystem consists of 1,952 CNFETs integrated with 224 RRAM cells. |
Author | Haitong Li Ping-Chen Huang Rabaey, Jan M. Wong, H.-S Philip Wu, Tony F. Shulaker, Max M. Mitra, Subhasish Rahimi, Abbas |
Author_xml | – sequence: 1 givenname: Tony F. surname: Wu fullname: Wu, Tony F. organization: Stanford Univ., Stanford, CA, USA – sequence: 2 surname: Haitong Li fullname: Haitong Li organization: Stanford Univ., Stanford, CA, USA – sequence: 3 surname: Ping-Chen Huang fullname: Ping-Chen Huang organization: Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 4 givenname: Abbas surname: Rahimi fullname: Rahimi, Abbas organization: Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 5 givenname: Jan M. surname: Rabaey fullname: Rabaey, Jan M. organization: Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 6 givenname: H.-S Philip surname: Wong fullname: Wong, H.-S Philip organization: Stanford Univ., Stanford, CA, USA – sequence: 7 givenname: Max M. surname: Shulaker fullname: Shulaker, Max M. organization: Massachusetts Inst. of Technol., Cambridge, MA, USA – sequence: 8 givenname: Subhasish surname: Mitra fullname: Mitra, Subhasish organization: Stanford Univ., Stanford, CA, USA |
BookMark | eNpN0L1OwzAYhWGDQKIt3AAsvoGUz3YS22wlAlqpCInCXPnnKzJqnWCniNw9CDownXd6hjMmJ7GNSMglgyljoK8Xq1XTTDkwNVWCgdD6iIxZBRpKXQI7JiMuZF2oGuozMs75HQAqXasR-bhNJsQixNyFhJ66dtft-xDfKH512zb8pjPJtpFGE9t-b5He371kaqKnCXPIffhE-jx7vKHzocPkww5jDm0023-aMxlp7vd-OCenG7PNeHHYCXn98Zp5sXx6WDSzZRGYrPqCccc8yKpy0iEwACu8l7UymnPrNVOs9MYoaysuSwTnNJbSc7kRmkuLGzEhV39uQMR1l8LOpGF9uEd8A4MPXds |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ISSCC.2018.8310399 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1509049401 9781509049400 |
EISSN | 2376-8606 |
EndPage | 494 |
ExternalDocumentID | 8310399 |
Genre | orig-research |
GroupedDBID | 29G 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-12c1d0755c7ce0100b3dd768a922bd91814daa8bb5274e0cc9e47d27f3927bef3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:42 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-12c1d0755c7ce0100b3dd768a922bd91814daa8bb5274e0cc9e47d27f3927bef3 |
PageCount | 3 |
ParticipantIDs | ieee_primary_8310399 |
PublicationCentury | 2000 |
PublicationDate | 2018-Feb. |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-Feb. |
PublicationDecade | 2010 |
PublicationTitle | Digest of technical papers - IEEE International Solid-State Circuits Conference |
PublicationTitleAbbrev | ISSCC |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0005968 |
Score | 2.4293985 |
Snippet | We demonstrate an end-to-end brain-inspired hyperdimensional (HD) computing nanosystem, effective for cognitive tasks such as language recognition, using... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 492 |
SubjectTerms | CNTFETs Delays Energy efficiency High definition video Resistance Three-dimensional displays Training |
Title | Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study |
URI | https://ieeexplore.ieee.org/document/8310399 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkaZo4ccwGFVVBKkKUSt0qP65ShUigJAz8es5OXyAGlshK4jjyRb774u_uI-QiVjFnUjIvARZ4DOGaJ4J0iouhlh2wB22zkQcPSX_E7sfxuEYuV7kwAODIZ-DbptvLN7ku7a-ythPFEqJO6gjcqlytNZ1DJOkyKSYQ7bvhsNu1zK3UX_T6IZ_ivEdvhwyW41akkRe_LJSvv36VZPzvi-2S1jpPjz6uPNAeqUG2T7Y3Sgw2yfuN1YDwZpndUQdDtVNxwEvUjTNzTS3nKs9oJrO8KBXQ3u3zB5WZoYjF7RrwCfTpenBF-wha8YN6taR3G8FvPE2jN6SuVm2LjLB_t-8tZBa8GcYOhdcJdcdg5BBrrgHhWaAiYxCFSBGGyggMAZiRMlUqRgSL5tMCGDchn2JoxRVMowPSyPIMDgkFziNIWMqMTvFWk0IEU8liLbm0ylhHpGknb_JWVdKYLObt-O_TJ2TLGrDiSJ-SRjEv4QxDgEKdO9t_AxN5tLs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOQAXlhax4wNHkiaps3GDiiqFtkK0lXqrvEylCpFASTjw9YzdFcSBS2QlcRzZlmee_WYeIVe-8EPGObMCYI7FEK5ZsRONcTGU3AV9kToaudMNkgF7GPrDErlexsIAgCGfga2L5ixfZbLQW2U1I4oVxxtkE-2-786itVaEjjiIFmExTlxr9XqNhuZuRfa83g8BFWM_mruks2h5Rht5sYtc2PLrV1LG__7aHqmuIvXo09IG7ZMSpAdkZy3JYIW832kVCGuS6jN1UFQaHQd8RE07E1OUfCqylKY8zfJCAG3e9z8oTxVFNK5XgU-gz7edG5ogbMUp9app79qHX_uaRHtITbbaKhlg_UZizYUWrAl6D7nletJV6Dv4MpSAAM0RdaUQh_DY84SK0QlgivNICB8xLA6gjIGFygvH6FyFAsb1Q1JOsxSOCIUwrEPAIqZkhK-qCOow5syXPORaG-uYVHTnjd5muTRG8347-fv2JdlK-p32qN3qPp6SbT2YM8b0GSnn0wLO0SHIxYWZB9-rPLgE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Digest+of+technical+papers+-+IEEE+International+Solid-State+Circuits+Conference&rft.atitle=Brain-inspired+computing+exploiting+carbon+nanotube+FETs+and+resistive+RAM%3A+Hyperdimensional+computing+case+study&rft.au=Wu%2C+Tony+F.&rft.au=Haitong+Li&rft.au=Ping-Chen+Huang&rft.au=Rahimi%2C+Abbas&rft.date=2018-02-01&rft.pub=IEEE&rft.eissn=2376-8606&rft.spage=492&rft.epage=494&rft_id=info:doi/10.1109%2FISSCC.2018.8310399&rft.externalDocID=8310399 |