Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study

We demonstrate an end-to-end brain-inspired hyperdimensional (HD) computing nanosystem, effective for cognitive tasks such as language recognition, using heterogeneous integration of multiple emerging nanotechnologies. It uses monolithic 3D integration of carbon nanotube field-effect transistors (CN...

Full description

Saved in:
Bibliographic Details
Published inDigest of technical papers - IEEE International Solid-State Circuits Conference pp. 492 - 494
Main Authors Wu, Tony F., Haitong Li, Ping-Chen Huang, Rahimi, Abbas, Rabaey, Jan M., Wong, H.-S Philip, Shulaker, Max M., Mitra, Subhasish
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.02.2018
Subjects
Online AccessGet full text
ISSN2376-8606
DOI10.1109/ISSCC.2018.8310399

Cover

Loading…
Abstract We demonstrate an end-to-end brain-inspired hyperdimensional (HD) computing nanosystem, effective for cognitive tasks such as language recognition, using heterogeneous integration of multiple emerging nanotechnologies. It uses monolithic 3D integration of carbon nanotube field-effect transistors (CNFETs, an emerging logic technology with significant energy-delay product (EDP) benefit vs. silicon CMOS [1]) and Resistive RAM (RRAM, an emerging memory that promises dense non-volatile and analog storage [2]). Due to their low fabrication temperature (<;250°C), CNFETs and RRAM naturally enable monolithic 3D integration with fine-grained and dense vertical connections (exceeding various chip stacking and packaging approaches) between computation and storage layers using back-end-of-line inter-layer vias [3]. We exploit RRAM and CNFETs to create area-and energy-efficient circuits for HD computing: approximate accumulation circuits using gradual RRAM reset operation (in addition to RRAM single-bit storage) and random projection circuits that embrace inherent variations in RRAM and CNFETs. Our results demonstrate: 1. pairwise classification of 21 European languages with measured accuracy of up to 98% on >20,000 sentences (6.4 million characters) per language pair. 2. One-shot learning (i.e., learning from few examples) using one text sample (~100,000 characters) per language. 3. Resilient operation (98% accuracy) despite 78% hardware errors (circuit outputs stuck at 0 or 1). Our HD nanosystem consists of 1,952 CNFETs integrated with 224 RRAM cells.
AbstractList We demonstrate an end-to-end brain-inspired hyperdimensional (HD) computing nanosystem, effective for cognitive tasks such as language recognition, using heterogeneous integration of multiple emerging nanotechnologies. It uses monolithic 3D integration of carbon nanotube field-effect transistors (CNFETs, an emerging logic technology with significant energy-delay product (EDP) benefit vs. silicon CMOS [1]) and Resistive RAM (RRAM, an emerging memory that promises dense non-volatile and analog storage [2]). Due to their low fabrication temperature (<;250°C), CNFETs and RRAM naturally enable monolithic 3D integration with fine-grained and dense vertical connections (exceeding various chip stacking and packaging approaches) between computation and storage layers using back-end-of-line inter-layer vias [3]. We exploit RRAM and CNFETs to create area-and energy-efficient circuits for HD computing: approximate accumulation circuits using gradual RRAM reset operation (in addition to RRAM single-bit storage) and random projection circuits that embrace inherent variations in RRAM and CNFETs. Our results demonstrate: 1. pairwise classification of 21 European languages with measured accuracy of up to 98% on >20,000 sentences (6.4 million characters) per language pair. 2. One-shot learning (i.e., learning from few examples) using one text sample (~100,000 characters) per language. 3. Resilient operation (98% accuracy) despite 78% hardware errors (circuit outputs stuck at 0 or 1). Our HD nanosystem consists of 1,952 CNFETs integrated with 224 RRAM cells.
Author Haitong Li
Ping-Chen Huang
Rabaey, Jan M.
Wong, H.-S Philip
Wu, Tony F.
Shulaker, Max M.
Mitra, Subhasish
Rahimi, Abbas
Author_xml – sequence: 1
  givenname: Tony F.
  surname: Wu
  fullname: Wu, Tony F.
  organization: Stanford Univ., Stanford, CA, USA
– sequence: 2
  surname: Haitong Li
  fullname: Haitong Li
  organization: Stanford Univ., Stanford, CA, USA
– sequence: 3
  surname: Ping-Chen Huang
  fullname: Ping-Chen Huang
  organization: Univ. of California, Berkeley, Berkeley, CA, USA
– sequence: 4
  givenname: Abbas
  surname: Rahimi
  fullname: Rahimi, Abbas
  organization: Univ. of California, Berkeley, Berkeley, CA, USA
– sequence: 5
  givenname: Jan M.
  surname: Rabaey
  fullname: Rabaey, Jan M.
  organization: Univ. of California, Berkeley, Berkeley, CA, USA
– sequence: 6
  givenname: H.-S Philip
  surname: Wong
  fullname: Wong, H.-S Philip
  organization: Stanford Univ., Stanford, CA, USA
– sequence: 7
  givenname: Max M.
  surname: Shulaker
  fullname: Shulaker, Max M.
  organization: Massachusetts Inst. of Technol., Cambridge, MA, USA
– sequence: 8
  givenname: Subhasish
  surname: Mitra
  fullname: Mitra, Subhasish
  organization: Stanford Univ., Stanford, CA, USA
BookMark eNpN0L1OwzAYhWGDQKIt3AAsvoGUz3YS22wlAlqpCInCXPnnKzJqnWCniNw9CDownXd6hjMmJ7GNSMglgyljoK8Xq1XTTDkwNVWCgdD6iIxZBRpKXQI7JiMuZF2oGuozMs75HQAqXasR-bhNJsQixNyFhJ66dtft-xDfKH512zb8pjPJtpFGE9t-b5He371kaqKnCXPIffhE-jx7vKHzocPkww5jDm0023-aMxlp7vd-OCenG7PNeHHYCXn98Zp5sXx6WDSzZRGYrPqCccc8yKpy0iEwACu8l7UymnPrNVOs9MYoaysuSwTnNJbSc7kRmkuLGzEhV39uQMR1l8LOpGF9uEd8A4MPXds
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISSCC.2018.8310399
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1509049401
9781509049400
EISSN 2376-8606
EndPage 494
ExternalDocumentID 8310399
Genre orig-research
GroupedDBID 29G
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-12c1d0755c7ce0100b3dd768a922bd91814daa8bb5274e0cc9e47d27f3927bef3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-12c1d0755c7ce0100b3dd768a922bd91814daa8bb5274e0cc9e47d27f3927bef3
PageCount 3
ParticipantIDs ieee_primary_8310399
PublicationCentury 2000
PublicationDate 2018-Feb.
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-Feb.
PublicationDecade 2010
PublicationTitle Digest of technical papers - IEEE International Solid-State Circuits Conference
PublicationTitleAbbrev ISSCC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0005968
Score 2.4293985
Snippet We demonstrate an end-to-end brain-inspired hyperdimensional (HD) computing nanosystem, effective for cognitive tasks such as language recognition, using...
SourceID ieee
SourceType Publisher
StartPage 492
SubjectTerms CNTFETs
Delays
Energy efficiency
High definition video
Resistance
Three-dimensional displays
Training
Title Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study
URI https://ieeexplore.ieee.org/document/8310399
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkaZo4ccwGFVVBKkKUSt0qP65ShUigJAz8es5OXyAGlshK4jjyRb774u_uI-QiVjFnUjIvARZ4DOGaJ4J0iouhlh2wB22zkQcPSX_E7sfxuEYuV7kwAODIZ-DbptvLN7ku7a-ythPFEqJO6gjcqlytNZ1DJOkyKSYQ7bvhsNu1zK3UX_T6IZ_ivEdvhwyW41akkRe_LJSvv36VZPzvi-2S1jpPjz6uPNAeqUG2T7Y3Sgw2yfuN1YDwZpndUQdDtVNxwEvUjTNzTS3nKs9oJrO8KBXQ3u3zB5WZoYjF7RrwCfTpenBF-wha8YN6taR3G8FvPE2jN6SuVm2LjLB_t-8tZBa8GcYOhdcJdcdg5BBrrgHhWaAiYxCFSBGGyggMAZiRMlUqRgSL5tMCGDchn2JoxRVMowPSyPIMDgkFziNIWMqMTvFWk0IEU8liLbm0ylhHpGknb_JWVdKYLObt-O_TJ2TLGrDiSJ-SRjEv4QxDgEKdO9t_AxN5tLs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOQAXlhax4wNHkiaps3GDiiqFtkK0lXqrvEylCpFASTjw9YzdFcSBS2QlcRzZlmee_WYeIVe-8EPGObMCYI7FEK5ZsRONcTGU3AV9kToaudMNkgF7GPrDErlexsIAgCGfga2L5ixfZbLQW2U1I4oVxxtkE-2-786itVaEjjiIFmExTlxr9XqNhuZuRfa83g8BFWM_mruks2h5Rht5sYtc2PLrV1LG__7aHqmuIvXo09IG7ZMSpAdkZy3JYIW832kVCGuS6jN1UFQaHQd8RE07E1OUfCqylKY8zfJCAG3e9z8oTxVFNK5XgU-gz7edG5ogbMUp9app79qHX_uaRHtITbbaKhlg_UZizYUWrAl6D7nletJV6Dv4MpSAAM0RdaUQh_DY84SK0QlgivNICB8xLA6gjIGFygvH6FyFAsb1Q1JOsxSOCIUwrEPAIqZkhK-qCOow5syXPORaG-uYVHTnjd5muTRG8347-fv2JdlK-p32qN3qPp6SbT2YM8b0GSnn0wLO0SHIxYWZB9-rPLgE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Digest+of+technical+papers+-+IEEE+International+Solid-State+Circuits+Conference&rft.atitle=Brain-inspired+computing+exploiting+carbon+nanotube+FETs+and+resistive+RAM%3A+Hyperdimensional+computing+case+study&rft.au=Wu%2C+Tony+F.&rft.au=Haitong+Li&rft.au=Ping-Chen+Huang&rft.au=Rahimi%2C+Abbas&rft.date=2018-02-01&rft.pub=IEEE&rft.eissn=2376-8606&rft.spage=492&rft.epage=494&rft_id=info:doi/10.1109%2FISSCC.2018.8310399&rft.externalDocID=8310399