Exploring possible choices of the Tikhonov regularization parameter for the method of fundamental solutions in electrocardiography

The inverse problem of electrocardiographic imaging (ECGI), i. e. computing epicardial potentials from the body surface measured potentials, is a challenging problem. In this setting, Tikhonov regularization is commonly employed, weighted by a regularization parameter. This parameter has an importan...

Full description

Saved in:
Bibliographic Details
Published in2017 Computing in Cardiology (CinC) pp. 1 - 4
Main Authors Chamorro-Servent, J., Dubois, R., Coudiere, Y.
Format Conference Proceeding
LanguageEnglish
Published CCAL 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The inverse problem of electrocardiographic imaging (ECGI), i. e. computing epicardial potentials from the body surface measured potentials, is a challenging problem. In this setting, Tikhonov regularization is commonly employed, weighted by a regularization parameter. This parameter has an important influence on the solution. In this work, we show the feasibility of two methods to choose the regularization parameter when using the method of fundamental solution, or MFS (a homogeneous meshless scheme based). These methods are i) a novel automatic technique based on the Discrete Picard condition (DPC), which we named ADPC and ii) the U-curve method introduced in other fields for cases where the well-known L-curve method fails or over-regularize the solution. We calculated the Tikhonov solution with the ADPC and U-curve methods for experimental data from the free distributed Experimental Data and Geometric Analysis Repository (EDGAR), and we compared them to the solution obtained with CRESO and L-curve procedures that are the two extensively used techniques in the ECGI.
AbstractList The inverse problem of electrocardiographic imaging (ECGI), i. e. computing epicardial potentials from the body surface measured potentials, is a challenging problem. In this setting, Tikhonov regularization is commonly employed, weighted by a regularization parameter. This parameter has an important influence on the solution. In this work, we show the feasibility of two methods to choose the regularization parameter when using the method of fundamental solution, or MFS (a homogeneous meshless scheme based). These methods are i) a novel automatic technique based on the Discrete Picard condition (DPC), which we named ADPC and ii) the U-curve method introduced in other fields for cases where the well-known L-curve method fails or over-regularize the solution. We calculated the Tikhonov solution with the ADPC and U-curve methods for experimental data from the free distributed Experimental Data and Geometric Analysis Repository (EDGAR), and we compared them to the solution obtained with CRESO and L-curve procedures that are the two extensively used techniques in the ECGI.
Author Chamorro-Servent, J.
Dubois, R.
Coudiere, Y.
Author_xml – sequence: 1
  givenname: J.
  surname: Chamorro-Servent
  fullname: Chamorro-Servent, J.
  organization: IHU-Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac-Bordeaux, France
– sequence: 2
  givenname: R.
  surname: Dubois
  fullname: Dubois, R.
  organization: CARMEN Research Team, INRIA, Bordeaux, France
– sequence: 3
  givenname: Y.
  surname: Coudiere
  fullname: Coudiere, Y.
  organization: IHU-Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac-Bordeaux, France
BookMark eNotjEtOwzAYhA0CiVJ6Adj4Ail-xvYSReUhVWJTJHaVk_xpDK4d2SmiLDk5LTCb0Wjmm0t0FmIAhK4pmTMmtLmtXKjmjFA1J7IsuFAn6JJKrsuy5ESfognjTBZaq9cLNMv5jRwklTalnqDvxefgY3Jhg4eYs6s94KaProGMY4fHHvDKvfcxxA-cYLPzNrkvO7oY8GCT3cIICXcx_S4PqY_tket2oT2UYbQe5-h3RyBjFzB4aMYUG5taFzfJDv3-Cp131meY_fsUvdwvVtVjsXx-eKruloWjSo4FpZozwbRoDGGamabWdUk7ZqBjQhlF2k5KxpXg1hKuBQgJQEEpUgMXxvIpuvn7dQCwHpLb2rRfa86pUIr_AH5mZQk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.22489/CinC.2017.056-347
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 1538666308
9781538666302
EISSN 2325-887X
EndPage 4
ExternalDocumentID 8331477
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
NQS
OCL
OK1
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-118324284c902829cb8b61f29ef247970df5523743aa0384e45ee1e770be349a3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:30:55 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-118324284c902829cb8b61f29ef247970df5523743aa0384e45ee1e770be349a3
PageCount 4
ParticipantIDs ieee_primary_8331477
PublicationCentury 2000
PublicationDate 2017-Sept.
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationTitle 2017 Computing in Cardiology (CinC)
PublicationTitleAbbrev CIC
PublicationYear 2017
Publisher CCAL
Publisher_xml – name: CCAL
SSID ssj0000578968
Score 1.6811533
Snippet The inverse problem of electrocardiographic imaging (ECGI), i. e. computing epicardial potentials from the body surface measured potentials, is a challenging...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Boundary conditions
Distributed databases
Electric potential
Electrodes
Heart
Imaging
Inverse problems
Title Exploring possible choices of the Tikhonov regularization parameter for the method of fundamental solutions in electrocardiography
URI https://ieeexplore.ieee.org/document/8331477
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwEBZJhtKpj6T0jYaOVWJbkiXNoSUUUjokkC3YyomatHYIToeO_eXVw3UhdOhmjIyNdNbd6b7vO4TuRATc2MSHSHfGxBg3JM9lRMBwk60kJOCFtKfP6WTOnhZ80UH3LRcGADz4DIbu0tfyV5XeuaOykaQ0ZkJ0UVcoFbha7XmKjTukSmXgxVi_JNVoXJRjB95y2pwpoXsdVLwDeTxC059XB9zIerir86H-3FNl_O-3HaPBL1UPv7RO6AR1oDxFB9OmYt5HXy3IDm8qZ_9vgO2O57YHXBlswz88K9avVVl94K3vS79tmJnYqYK_O7QMtoGtHxnaTbvnjCOQhL4AuLVeXJS4aaujPcw1qGEP0PzxYTaekKbvAilsMFGT2P3mNi1hWvlCq85lnsYmUWASJpSIVobb_NXGHlkWUcmAcYAYhIhyoExl9Az1yqqEc4StY1QKqOIR1YxpnnFmh0uTUC1UpvkF6rupXG6CtMaymcXLv29foUO3nAHidY169XYHNzYmqPNbbwzflfC5fg
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKkYCJR4t444GRtElsJ_ZcURVoKoZW6lYl7llUhaSqUgZGfjl-hCBVDGxR5CiRY_u-u_vuPoTuYh-Y0o6Px02MiVKmvCzjvgeKqXTOIQTbSDsZRYMJfZqyaQPd17UwAGDJZ9AxlzaXPy_kxoTKupyQgMbxDtrVuJpHrlqrjqho5MFFxF1ljLZMXHR7i7xn6FumO2fkkS0NFWtC-oco-Xm5Y44sO5sy68jPrb6M__26I9T-LdbDL7UZOkYNyE_QXlLlzFvoq6bZ4VVhdsAbYH3mmQMCFwprAIjHi-VrkRcfeG2V6ddVbSY2fcHfDV8Ga2hrRzrBafOcMiUkThkA1-sXL3JcCetIS3R1_bDbaNJ_GPcGXqW84C00nCi9wGx07ZhQKWyqVWY8iwIVClAhjUXszxXTHqxGH2nqE06BMoAA4tjPgFCRklPUzIsczhDWplEIIIL5RFIqWcqoHs5VSGQsUsnOUctM5WzlmmvMqlm8-Pv2LdofjJPhbPg4er5EB-bXOsLXFWqW6w1ca4RQZjd2YXwDcNK8yQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+Computing+in+Cardiology+%28CinC%29&rft.atitle=Exploring+possible+choices+of+the+Tikhonov+regularization+parameter+for+the+method+of+fundamental+solutions+in+electrocardiography&rft.au=Chamorro-Servent%2C+J.&rft.au=Dubois%2C+R.&rft.au=Coudiere%2C+Y.&rft.date=2017-09-01&rft.pub=CCAL&rft.eissn=2325-887X&rft.spage=1&rft.epage=4&rft_id=info:doi/10.22489%2FCinC.2017.056-347&rft.externalDocID=8331477