Jacobian linearisation in a geometric setting
Linearisation is a common technique in control applications, putting useful analysis and design methodologies at the disposal of the control engineer. In this paper, linearisation is studied from a differential geometric perspective. First it is pointed out that the "naive" Jacobian techni...
Saved in:
Published in | 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475) Vol. 6; pp. 6084 - 6089 Vol.6 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Linearisation is a common technique in control applications, putting useful analysis and design methodologies at the disposal of the control engineer. In this paper, linearisation is studied from a differential geometric perspective. First it is pointed out that the "naive" Jacobian techniques do not make geometric sense along nontrivial reference trajectories, in that they are dependent on a choice of coordinates. A coordinate-invariant setting for linearisation is presented to address this matter. The setting here is somewhat more complicated than that seen in the naive setting. The controllability of the geometric linearisation is characterised by giving an alternate version of the usual controllability test for time-varying linear systems. The problems of stability, stabilisation, and quadratic optimal control are discussed as topics for future work. |
---|---|
AbstractList | Linearisation is a common technique in control applications, putting useful analysis and design methodologies at the disposal of the control engineer. In this paper, linearisation is studied from a differential geometric perspective. First it is pointed out that the "naive" Jacobian techniques do not make geometric sense along nontrivial reference trajectories, in that they are dependent on a choice of coordinates. A coordinate-invariant setting for linearisation is presented to address this matter. The setting here is somewhat more complicated than that seen in the naive setting. The controllability of the geometric linearisation is characterised by giving an alternate version of the usual controllability test for time-varying linear systems. The problems of stability, stabilisation, and quadratic optimal control are discussed as topics for future work. |
Author | Tyner, D.R. Lewis, A.D. |
Author_xml | – sequence: 1 givenname: D.R. surname: Tyner fullname: Tyner, D.R. organization: Math. & Stat., Queen's Univ., Kingston, Ont., Canada – sequence: 2 givenname: A.D. surname: Lewis fullname: Lewis, A.D. organization: Math. & Stat., Queen's Univ., Kingston, Ont., Canada |
BookMark | eNotj01LAzEUAANWsK29C17yB7K-5GV3k6Os3xS86Lm8pC8l0mZlNxf_vYKFgbkNzEosylhYiBsNjdbg74aHoTEA2GjTG4NwITa-d_AH9t5YuxBL0F4rY3R3JVbz_AUADrpuKdQbxTFkKvKYC9OUZ6p5LDIXSfLA44nrlKOcudZcDtfiMtFx5s3Za_H59PgxvKjt-_PrcL9VWfdYVTQO2wgWWDsm10aDAboEDhP63nJKLe27GIINFAJbiBRbz-hDSDHFPa7F7X83M_Pue8onmn525zv8BUKJRVw |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CDC.2003.1272230 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EndPage | 6089 Vol.6 |
ExternalDocumentID | 1272230 |
GroupedDBID | 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK CHZPO IPLJI JC5 OCL RIE RIG RIO RNS |
ID | FETCH-LOGICAL-i173t-c2835c040e18ea85c23b06f083f3974eff5ad6cbb4babbe40cac59e39bbfcfcd3 |
IEDL.DBID | RIE |
ISBN | 9780780379244 0780379241 |
ISSN | 0191-2216 |
IngestDate | Wed Jun 26 19:20:49 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i173t-c2835c040e18ea85c23b06f083f3974eff5ad6cbb4babbe40cac59e39bbfcfcd3 |
ParticipantIDs | ieee_primary_1272230 |
PublicationCentury | 2000 |
PublicationDate | 20030000 |
PublicationDateYYYYMMDD | 2003-01-01 |
PublicationDate_xml | – year: 2003 text: 20030000 |
PublicationDecade | 2000 |
PublicationTitle | 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475) |
PublicationTitleAbbrev | CDC |
PublicationYear | 2003 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008066 ssj0000451603 |
Score | 1.3523909 |
Snippet | Linearisation is a common technique in control applications, putting useful analysis and design methodologies at the disposal of the control engineer. In this... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 6084 |
SubjectTerms | Control systems Control theory Controllability Design engineering Design methodology Jacobian matrices Mathematics Optimal control Statistical analysis System testing |
Title | Jacobian linearisation in a geometric setting |
URI | https://ieeexplore.ieee.org/document/1272230 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tIi3MjDiNIkfSeZCVVUqYqBSt8q-nFGFSBFNF349tpOmgBjY4ixOfPLdfff4jpBbI0Apq_VoLFKkHFRKlUok5ZIZliiptXJAcfooxzM-mYt5h9y1vTCI6IvPMHSPPpdfrGDjQmWDOEmtNbMAfS_N87pXq42nOJ4UGe20cBbVeUqLR2iSxNJD9ixiqQUcccO8s13zbf4yygfD-6FnCQ2bzX5MXfFGZ3RIptvPrWtNXsNNpUP4_MXk-N__OSL9XXtf8NQarmPSwfKEHHxjJrSraUvnuu4ROrF605GTB84pdWMLvTyDZRmo4AVXb24sFwRr9EXUfTIbPTwPx7SZs0CXccoqCo5zDextxjhDlQlImI6ksc6Zsd4KR2OEKiRozbXSGnkECkSOLNfagIGCnZJuuSrxjARZgWiAAypjuMFMo-AIcQaKCW6UPCc9dwyL95pKY9GcwMXfry_Jvq-d8xGPK9KtPjZ4bX2ASt944X8BZAirSA |
link.rule.ids | 310,311,783,787,792,793,799,4057,4058,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgALjxbxJgMjTvNwnHQuVKU0FUMrdavsyxlViBTRdOHXYztpCoiBLc6SxEnuvu8e3xFyqyIQQls96kcxUgYipkIEnDIeqjAQXEphiGI65oMpG86iWYPc1b0wiGiLz9A1hzaXny1hbUJlHT-ItTfTBH1H4-qEl91adUTFKKVwb2uHE6_MVGpGQoPA55a0J14Ya8rhV9o7mzXbZDC9bqd337M6oW51uR9zV6zb6R-QdHPDZbXJq7supAufv7Qc__tEh6S9bfBznmvXdUQamB-T_W_ahHqV1oKuqxahQ205jTy5Y2CpGVxo36izyB3hvODyzQzmAmeFtoy6Tab9h0lvQKtJC3Thx2FBwaiugf6f0U9QJBEEofS40vBMabzCUKlIZBykZFJIicwDAVEXw66UChRk4Qlp5sscT4mTZIgKGKBQiilMJEYMwU9AhBFTgp-RltmG-XsppjGvduD879M3ZHcwSUfz0eP46YLs2Uo6G_-4JM3iY41XGhEU8tp-CF-PIa6T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=42nd+IEEE+International+Conference+on+Decision+and+Control+%28IEEE+Cat.+No.03CH37475%29&rft.atitle=Jacobian+linearisation+in+a+geometric+setting&rft.au=Tyner%2C+D.R.&rft.au=Lewis%2C+A.D.&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780379244&rft.issn=0191-2216&rft.volume=6&rft.spage=6084&rft.epage=6089+Vol.6&rft_id=info:doi/10.1109%2FCDC.2003.1272230&rft.externalDocID=1272230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2216&client=summon |