Jacobian linearisation in a geometric setting

Linearisation is a common technique in control applications, putting useful analysis and design methodologies at the disposal of the control engineer. In this paper, linearisation is studied from a differential geometric perspective. First it is pointed out that the "naive" Jacobian techni...

Full description

Saved in:
Bibliographic Details
Published in42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475) Vol. 6; pp. 6084 - 6089 Vol.6
Main Authors Tyner, D.R., Lewis, A.D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Linearisation is a common technique in control applications, putting useful analysis and design methodologies at the disposal of the control engineer. In this paper, linearisation is studied from a differential geometric perspective. First it is pointed out that the "naive" Jacobian techniques do not make geometric sense along nontrivial reference trajectories, in that they are dependent on a choice of coordinates. A coordinate-invariant setting for linearisation is presented to address this matter. The setting here is somewhat more complicated than that seen in the naive setting. The controllability of the geometric linearisation is characterised by giving an alternate version of the usual controllability test for time-varying linear systems. The problems of stability, stabilisation, and quadratic optimal control are discussed as topics for future work.
AbstractList Linearisation is a common technique in control applications, putting useful analysis and design methodologies at the disposal of the control engineer. In this paper, linearisation is studied from a differential geometric perspective. First it is pointed out that the "naive" Jacobian techniques do not make geometric sense along nontrivial reference trajectories, in that they are dependent on a choice of coordinates. A coordinate-invariant setting for linearisation is presented to address this matter. The setting here is somewhat more complicated than that seen in the naive setting. The controllability of the geometric linearisation is characterised by giving an alternate version of the usual controllability test for time-varying linear systems. The problems of stability, stabilisation, and quadratic optimal control are discussed as topics for future work.
Author Tyner, D.R.
Lewis, A.D.
Author_xml – sequence: 1
  givenname: D.R.
  surname: Tyner
  fullname: Tyner, D.R.
  organization: Math. & Stat., Queen's Univ., Kingston, Ont., Canada
– sequence: 2
  givenname: A.D.
  surname: Lewis
  fullname: Lewis, A.D.
  organization: Math. & Stat., Queen's Univ., Kingston, Ont., Canada
BookMark eNotj01LAzEUAANWsK29C17yB7K-5GV3k6Os3xS86Lm8pC8l0mZlNxf_vYKFgbkNzEosylhYiBsNjdbg74aHoTEA2GjTG4NwITa-d_AH9t5YuxBL0F4rY3R3JVbz_AUADrpuKdQbxTFkKvKYC9OUZ6p5LDIXSfLA44nrlKOcudZcDtfiMtFx5s3Za_H59PgxvKjt-_PrcL9VWfdYVTQO2wgWWDsm10aDAboEDhP63nJKLe27GIINFAJbiBRbz-hDSDHFPa7F7X83M_Pue8onmn525zv8BUKJRVw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC.2003.1272230
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EndPage 6089 Vol.6
ExternalDocumentID 1272230
GroupedDBID 29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
CHZPO
IPLJI
JC5
OCL
RIE
RIG
RIO
RNS
ID FETCH-LOGICAL-i173t-c2835c040e18ea85c23b06f083f3974eff5ad6cbb4babbe40cac59e39bbfcfcd3
IEDL.DBID RIE
ISBN 9780780379244
0780379241
ISSN 0191-2216
IngestDate Wed Jun 26 19:20:49 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i173t-c2835c040e18ea85c23b06f083f3974eff5ad6cbb4babbe40cac59e39bbfcfcd3
ParticipantIDs ieee_primary_1272230
PublicationCentury 2000
PublicationDate 20030000
PublicationDateYYYYMMDD 2003-01-01
PublicationDate_xml – year: 2003
  text: 20030000
PublicationDecade 2000
PublicationTitle 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)
PublicationTitleAbbrev CDC
PublicationYear 2003
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008066
ssj0000451603
Score 1.3523909
Snippet Linearisation is a common technique in control applications, putting useful analysis and design methodologies at the disposal of the control engineer. In this...
SourceID ieee
SourceType Publisher
StartPage 6084
SubjectTerms Control systems
Control theory
Controllability
Design engineering
Design methodology
Jacobian matrices
Mathematics
Optimal control
Statistical analysis
System testing
Title Jacobian linearisation in a geometric setting
URI https://ieeexplore.ieee.org/document/1272230
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tIi3MjDiNIkfSeZCVVUqYqBSt8q-nFGFSBFNF349tpOmgBjY4ixOfPLdfff4jpBbI0Apq_VoLFKkHFRKlUok5ZIZliiptXJAcfooxzM-mYt5h9y1vTCI6IvPMHSPPpdfrGDjQmWDOEmtNbMAfS_N87pXq42nOJ4UGe20cBbVeUqLR2iSxNJD9ixiqQUcccO8s13zbf4yygfD-6FnCQ2bzX5MXfFGZ3RIptvPrWtNXsNNpUP4_MXk-N__OSL9XXtf8NQarmPSwfKEHHxjJrSraUvnuu4ROrF605GTB84pdWMLvTyDZRmo4AVXb24sFwRr9EXUfTIbPTwPx7SZs0CXccoqCo5zDextxjhDlQlImI6ksc6Zsd4KR2OEKiRozbXSGnkECkSOLNfagIGCnZJuuSrxjARZgWiAAypjuMFMo-AIcQaKCW6UPCc9dwyL95pKY9GcwMXfry_Jvq-d8xGPK9KtPjZ4bX2ASt944X8BZAirSA
link.rule.ids 310,311,783,787,792,793,799,4057,4058,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgALjxbxJgMjTvNwnHQuVKU0FUMrdavsyxlViBTRdOHXYztpCoiBLc6SxEnuvu8e3xFyqyIQQls96kcxUgYipkIEnDIeqjAQXEphiGI65oMpG86iWYPc1b0wiGiLz9A1hzaXny1hbUJlHT-ItTfTBH1H4-qEl91adUTFKKVwb2uHE6_MVGpGQoPA55a0J14Ya8rhV9o7mzXbZDC9bqd337M6oW51uR9zV6zb6R-QdHPDZbXJq7supAufv7Qc__tEh6S9bfBznmvXdUQamB-T_W_ahHqV1oKuqxahQ205jTy5Y2CpGVxo36izyB3hvODyzQzmAmeFtoy6Tab9h0lvQKtJC3Thx2FBwaiugf6f0U9QJBEEofS40vBMabzCUKlIZBykZFJIicwDAVEXw66UChRk4Qlp5sscT4mTZIgKGKBQiilMJEYMwU9AhBFTgp-RltmG-XsppjGvduD879M3ZHcwSUfz0eP46YLs2Uo6G_-4JM3iY41XGhEU8tp-CF-PIa6T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=42nd+IEEE+International+Conference+on+Decision+and+Control+%28IEEE+Cat.+No.03CH37475%29&rft.atitle=Jacobian+linearisation+in+a+geometric+setting&rft.au=Tyner%2C+D.R.&rft.au=Lewis%2C+A.D.&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780379244&rft.issn=0191-2216&rft.volume=6&rft.spage=6084&rft.epage=6089+Vol.6&rft_id=info:doi/10.1109%2FCDC.2003.1272230&rft.externalDocID=1272230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2216&client=summon