A method of constructing fuzzy neural network based on rough set theory
A method of constructing fuzzy neural network structure by using rough set theory is presented . Since rough set theory has strong ability of analyzing numerical value and fuzzy neural network has the ability of approximating function nicely, a neural network model which has good intelligibility, si...
Saved in:
Published in | Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693) Vol. 3; pp. 1723 - 1728 Vol.3 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A method of constructing fuzzy neural network structure by using rough set theory is presented . Since rough set theory has strong ability of analyzing numerical value and fuzzy neural network has the ability of approximating function nicely, a neural network model which has good intelligibility, simple computation and fast convergence is constructed by combining both theory. The main process to construct this network is as follows: firstly to acquire rules from present data set by rough set theory; then the cell number of each layer and relevant initial parameters are constructed according to these rules; finally all kinds of parameters are computed by BP(back promulgation) arithmetic and the design of the network is finished. Also in this paper an example of approximating a 2D nonlinear function is discussed and the feasibility and validity of the method are proved. |
---|---|
AbstractList | A method of constructing fuzzy neural network structure by using rough set theory is presented . Since rough set theory has strong ability of analyzing numerical value and fuzzy neural network has the ability of approximating function nicely, a neural network model which has good intelligibility, simple computation and fast convergence is constructed by combining both theory. The main process to construct this network is as follows: firstly to acquire rules from present data set by rough set theory; then the cell number of each layer and relevant initial parameters are constructed according to these rules; finally all kinds of parameters are computed by BP(back promulgation) arithmetic and the design of the network is finished. Also in this paper an example of approximating a 2D nonlinear function is discussed and the feasibility and validity of the method are proved. |
Author | Ji-Kai Yi Yan-Hong Zhang Xian-Ming Huang |
Author_xml | – sequence: 1 surname: Xian-Ming Huang fullname: Xian-Ming Huang organization: Coll. of Electron. Inf. & Control Eng., Beijing Univ. of Technol., China – sequence: 2 surname: Ji-Kai Yi fullname: Ji-Kai Yi organization: Coll. of Electron. Inf. & Control Eng., Beijing Univ. of Technol., China – sequence: 3 surname: Yan-Hong Zhang fullname: Yan-Hong Zhang organization: Coll. of Electron. Inf. & Control Eng., Beijing Univ. of Technol., China |
BookMark | eNotj11LwzAYRgMq6Ob-gN7kD6zmo2-TXo6ic1DxRq9H2r5Zq1siSYp0v96COzfn5vDAsyDXzjsk5IGzjHNWPu2qt7rKBGMy4wJKpeCKLJjSTCpdgLglqxi_2EwOsgR9R7YbesLU-456S1vvYgpjmwZ3oHY8nyfqcAzmOCv9-vBNGxNxTh0Nfjz0NGKiqUcfpntyY80x4uriJfl8ef6oXtf1-3ZXber1wJVMa6kEmII1xlquJeSss1oiB22Y1aJsNbSNLBuLbQEMleq40KazWEBhVC4auSSP_7sDIu5_wnAyYdpfvso_hcxMtw |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICMLC.2003.1259775 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EndPage | 1728 Vol.3 |
ExternalDocumentID | 1259775 |
GroupedDBID | 6IE 6IH 6IK 6IL AAJGR AAVQY ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i173t-3725a60baff183540df83e158a0f829c85cb39bfec650e77d128adfe656a742b3 |
IEDL.DBID | RIE |
ISBN | 0780378652 9780780378650 9780780381315 0780381319 |
IngestDate | Wed Jun 26 19:20:54 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i173t-3725a60baff183540df83e158a0f829c85cb39bfec650e77d128adfe656a742b3 |
ParticipantIDs | ieee_primary_1259775 |
PublicationCentury | 2000 |
PublicationDate | 20030000 |
PublicationDateYYYYMMDD | 2003-01-01 |
PublicationDate_xml | – year: 2003 text: 20030000 |
PublicationDecade | 2000 |
PublicationTitle | Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693) |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2003 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000453958 ssj0000395628 |
Score | 1.349398 |
Snippet | A method of constructing fuzzy neural network structure by using rough set theory is presented . Since rough set theory has strong ability of analyzing... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1723 |
SubjectTerms | Arithmetic Biological neural networks Computer networks Control engineering Fuzzy control Fuzzy logic Fuzzy neural networks Fuzzy set theory Neural networks Set theory |
Title | A method of constructing fuzzy neural network based on rough set theory |
URI | https://ieeexplore.ieee.org/document/1259775 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2nTgN2BBv5cCRdm2zNO0RTYyBGOLApN2mJHUQAnVIdIft1-Om7XiIA6fWSaXWlhU_an8GuMBImSwMY89yzb0S0NtTEmMv1IZzSRYZ3eS56UM8mQ3v5mLegsttLwwiuuIz9Mtb9y8_W5pVmSobkDEmd0W0oS3TtOrV2uZTAk6efu1KO3ooaCVxkXoS0GtjETVEEpLi1eg7zWbwjS73RdNhE6SD29H0fuSwQ_36E37MYnGmaNyFacNEVYHy6q8K7ZvNL3zH_3K5C_2vpj_2uDVne9DCfB-6zdQHVh8CPbi5YtXYaba0zCwbBNr8mdnVZrNmJUKmeqOLqy9npZmkR3Pm5gGxDyyYa55c92E2vn4aTbx6HIP3Ekpe0FEUCRUHWlkbunRRZhOOoUhUYJMoNYkwmqfaoiFpopQZmT6VWSSPUVEArvkBdPJljofAuLakO0GGURwNVaQ1BVFCS4qelDBS6iPolXJZvFeIG4taJMd_L5_Ajiuxc4mRU-gQ23hGrkKhz52OfAKZXrPo |
link.rule.ids | 310,311,783,787,792,793,799,4059,4060,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsBUoEW88cBI0iSu43REFdBCUzG0UrfKdmyEQAkS6dD-ei5OUh5iYEpsR0p8Ovm7u9x9B3ClA6ES3w8dQyV1CkJvR3AdOr5UlHJEZG07z8WTcDjrPczZvAHXm1oYrbVNPtNucWv_5SeZWhahsi6CMZorbAu2WWFXlNVam4iKR9HWr4xpO-4xnImsrx55-OKQBfUg8lH1Kv6detH7Ni7WWV1j4_W7o0E8Hlj2ULf6iB_dWCwY3bUgrrdR5qC8ustcumr9i-Hxv_vcg85X2R952gDaPjR0egCtuu8DqY6BNtzfkLLxNMkMUVnNQZs-E7Ncr1ek4MgUb3ixGeakAEp8NCW2IxD50Dmx5ZOrDszubqeDoVM1ZHBefE5zPIwCJkJPCmN8GzBKTES1zyLhmSjoq4gpSfvSaIXS1JwnCH4iMRptRoEuuKSH0EyzVB8BodKg9niJDsKgJwIp0Y1ikqP_JJjiXB5Du5DL4r3k3FhUIjn5e_oSdobTeLwYjyaPp7BrE-5smOQMmigCfY6GQy4vrL58Aj5JtzU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2003+International+Conference+on+Machine+Learning+and+Cybernetics+%28IEEE+Cat.+No.03EX693%29&rft.atitle=A+method+of+constructing+fuzzy+neural+network+based+on+rough+set+theory&rft.au=Xian-Ming+Huang&rft.au=Ji-Kai+Yi&rft.au=Yan-Hong+Zhang&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780381315&rft.volume=3&rft.spage=1723&rft.epage=1728+Vol.3&rft_id=info:doi/10.1109%2FICMLC.2003.1259775&rft.externalDocID=1259775 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378650/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378650/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378650/sc.gif&client=summon&freeimage=true |