A method of constructing fuzzy neural network based on rough set theory

A method of constructing fuzzy neural network structure by using rough set theory is presented . Since rough set theory has strong ability of analyzing numerical value and fuzzy neural network has the ability of approximating function nicely, a neural network model which has good intelligibility, si...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693) Vol. 3; pp. 1723 - 1728 Vol.3
Main Authors Xian-Ming Huang, Ji-Kai Yi, Yan-Hong Zhang
Format Conference Proceeding
LanguageEnglish
Published IEEE 2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A method of constructing fuzzy neural network structure by using rough set theory is presented . Since rough set theory has strong ability of analyzing numerical value and fuzzy neural network has the ability of approximating function nicely, a neural network model which has good intelligibility, simple computation and fast convergence is constructed by combining both theory. The main process to construct this network is as follows: firstly to acquire rules from present data set by rough set theory; then the cell number of each layer and relevant initial parameters are constructed according to these rules; finally all kinds of parameters are computed by BP(back promulgation) arithmetic and the design of the network is finished. Also in this paper an example of approximating a 2D nonlinear function is discussed and the feasibility and validity of the method are proved.
AbstractList A method of constructing fuzzy neural network structure by using rough set theory is presented . Since rough set theory has strong ability of analyzing numerical value and fuzzy neural network has the ability of approximating function nicely, a neural network model which has good intelligibility, simple computation and fast convergence is constructed by combining both theory. The main process to construct this network is as follows: firstly to acquire rules from present data set by rough set theory; then the cell number of each layer and relevant initial parameters are constructed according to these rules; finally all kinds of parameters are computed by BP(back promulgation) arithmetic and the design of the network is finished. Also in this paper an example of approximating a 2D nonlinear function is discussed and the feasibility and validity of the method are proved.
Author Ji-Kai Yi
Yan-Hong Zhang
Xian-Ming Huang
Author_xml – sequence: 1
  surname: Xian-Ming Huang
  fullname: Xian-Ming Huang
  organization: Coll. of Electron. Inf. & Control Eng., Beijing Univ. of Technol., China
– sequence: 2
  surname: Ji-Kai Yi
  fullname: Ji-Kai Yi
  organization: Coll. of Electron. Inf. & Control Eng., Beijing Univ. of Technol., China
– sequence: 3
  surname: Yan-Hong Zhang
  fullname: Yan-Hong Zhang
  organization: Coll. of Electron. Inf. & Control Eng., Beijing Univ. of Technol., China
BookMark eNotj11LwzAYRgMq6Ob-gN7kD6zmo2-TXo6ic1DxRq9H2r5Zq1siSYp0v96COzfn5vDAsyDXzjsk5IGzjHNWPu2qt7rKBGMy4wJKpeCKLJjSTCpdgLglqxi_2EwOsgR9R7YbesLU-456S1vvYgpjmwZ3oHY8nyfqcAzmOCv9-vBNGxNxTh0Nfjz0NGKiqUcfpntyY80x4uriJfl8ef6oXtf1-3ZXber1wJVMa6kEmII1xlquJeSss1oiB22Y1aJsNbSNLBuLbQEMleq40KazWEBhVC4auSSP_7sDIu5_wnAyYdpfvso_hcxMtw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICMLC.2003.1259775
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 1728 Vol.3
ExternalDocumentID 1259775
GroupedDBID 6IE
6IH
6IK
6IL
AAJGR
AAVQY
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i173t-3725a60baff183540df83e158a0f829c85cb39bfec650e77d128adfe656a742b3
IEDL.DBID RIE
ISBN 0780378652
9780780378650
9780780381315
0780381319
IngestDate Wed Jun 26 19:20:54 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i173t-3725a60baff183540df83e158a0f829c85cb39bfec650e77d128adfe656a742b3
ParticipantIDs ieee_primary_1259775
PublicationCentury 2000
PublicationDate 20030000
PublicationDateYYYYMMDD 2003-01-01
PublicationDate_xml – year: 2003
  text: 20030000
PublicationDecade 2000
PublicationTitle Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693)
PublicationTitleAbbrev ICMLC
PublicationYear 2003
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453958
ssj0000395628
Score 1.349398
Snippet A method of constructing fuzzy neural network structure by using rough set theory is presented . Since rough set theory has strong ability of analyzing...
SourceID ieee
SourceType Publisher
StartPage 1723
SubjectTerms Arithmetic
Biological neural networks
Computer networks
Control engineering
Fuzzy control
Fuzzy logic
Fuzzy neural networks
Fuzzy set theory
Neural networks
Set theory
Title A method of constructing fuzzy neural network based on rough set theory
URI https://ieeexplore.ieee.org/document/1259775
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2nTgN2BBv5cCRdm2zNO0RTYyBGOLApN2mJHUQAnVIdIft1-Om7XiIA6fWSaXWlhU_an8GuMBImSwMY89yzb0S0NtTEmMv1IZzSRYZ3eS56UM8mQ3v5mLegsttLwwiuuIz9Mtb9y8_W5pVmSobkDEmd0W0oS3TtOrV2uZTAk6efu1KO3ooaCVxkXoS0GtjETVEEpLi1eg7zWbwjS73RdNhE6SD29H0fuSwQ_36E37MYnGmaNyFacNEVYHy6q8K7ZvNL3zH_3K5C_2vpj_2uDVne9DCfB-6zdQHVh8CPbi5YtXYaba0zCwbBNr8mdnVZrNmJUKmeqOLqy9npZmkR3Pm5gGxDyyYa55c92E2vn4aTbx6HIP3Ekpe0FEUCRUHWlkbunRRZhOOoUhUYJMoNYkwmqfaoiFpopQZmT6VWSSPUVEArvkBdPJljofAuLakO0GGURwNVaQ1BVFCS4qelDBS6iPolXJZvFeIG4taJMd_L5_Ajiuxc4mRU-gQ23hGrkKhz52OfAKZXrPo
link.rule.ids 310,311,783,787,792,793,799,4059,4060,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsBUoEW88cBI0iSu43REFdBCUzG0UrfKdmyEQAkS6dD-ei5OUh5iYEpsR0p8Ovm7u9x9B3ClA6ES3w8dQyV1CkJvR3AdOr5UlHJEZG07z8WTcDjrPczZvAHXm1oYrbVNPtNucWv_5SeZWhahsi6CMZorbAu2WWFXlNVam4iKR9HWr4xpO-4xnImsrx55-OKQBfUg8lH1Kv6detH7Ni7WWV1j4_W7o0E8Hlj2ULf6iB_dWCwY3bUgrrdR5qC8ustcumr9i-Hxv_vcg85X2R952gDaPjR0egCtuu8DqY6BNtzfkLLxNMkMUVnNQZs-E7Ncr1ek4MgUb3ixGeakAEp8NCW2IxD50Dmx5ZOrDszubqeDoVM1ZHBefE5zPIwCJkJPCmN8GzBKTES1zyLhmSjoq4gpSfvSaIXS1JwnCH4iMRptRoEuuKSH0EyzVB8BodKg9niJDsKgJwIp0Y1ikqP_JJjiXB5Du5DL4r3k3FhUIjn5e_oSdobTeLwYjyaPp7BrE-5smOQMmigCfY6GQy4vrL58Aj5JtzU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2003+International+Conference+on+Machine+Learning+and+Cybernetics+%28IEEE+Cat.+No.03EX693%29&rft.atitle=A+method+of+constructing+fuzzy+neural+network+based+on+rough+set+theory&rft.au=Xian-Ming+Huang&rft.au=Ji-Kai+Yi&rft.au=Yan-Hong+Zhang&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780381315&rft.volume=3&rft.spage=1723&rft.epage=1728+Vol.3&rft_id=info:doi/10.1109%2FICMLC.2003.1259775&rft.externalDocID=1259775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378650/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378650/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378650/sc.gif&client=summon&freeimage=true