Null controllability and stabilization of linear systems subject to asymmetric actuator saturation

This paper generalizes our recent results on the null controllable regions and the stabilizability of exponentially unstable linear systems subject to symmetric actuator saturation. The description of the null controllable region carries smoothly from the symmetric case to the asymmetric case. As to...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187) Vol. 4; pp. 3254 - 3259 vol.4
Main Authors Tingshu Hu, Pitsillides, A.N., Zongli Lin
Format Conference Proceeding
LanguageEnglish
Published IEEE 2000
Subjects
Online AccessGet full text
ISBN0780366387
9780780366381
ISSN0191-2216
DOI10.1109/CDC.2000.912200

Cover

Abstract This paper generalizes our recent results on the null controllable regions and the stabilizability of exponentially unstable linear systems subject to symmetric actuator saturation. The description of the null controllable region carries smoothly from the symmetric case to the asymmetric case. As to stabilization, we have to take a quite different approach since the earlier development relies mainly on the symmetric property of the vector field. Specifically, in this paper, we construct a Lyapunov function from a closed trajectory to show that this closed trajectory forms the boundary of the domain of attraction for a planar anti-stable system under the control of a saturated linear feedback. If the linear feedback is designed by the LQR method, then there is a unique limit cycle which forms the boundary of the domain of attraction. We further show that if the gain is increased along the direction of the LQR feedback, then the domain of attraction can be made arbitrarily close to the null controllable region. This design can be utilized to construct state feedback laws for higher order systems with two exponentially unstable poles.
AbstractList This paper generalizes our recent results on the null controllable regions and the stabilizability of exponentially unstable linear systems subject to symmetric actuator saturation. The description of the null controllable region carries smoothly from the symmetric case to the asymmetric case. As to stabilization, we have to take a quite different approach since the earlier development relies mainly on the symmetric property of the vector field. Specifically, in this paper, we construct a Lyapunov function from a closed trajectory to show that this closed trajectory forms the boundary of the domain of attraction for a planar anti-stable system under the control of a saturated linear feedback. If the linear feedback is designed by the LQR method, then there is a unique limit cycle which forms the boundary of the domain of attraction. We further show that if the gain is increased along the direction of the LQR feedback, then the domain of attraction can be made arbitrarily close to the null controllable region. This design can be utilized to construct state feedback laws for higher order systems with two exponentially unstable poles.
Author Tingshu Hu
Pitsillides, A.N.
Zongli Lin
Author_xml – sequence: 1
  surname: Tingshu Hu
  fullname: Tingshu Hu
  organization: Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA
– sequence: 2
  givenname: A.N.
  surname: Pitsillides
  fullname: Pitsillides, A.N.
– sequence: 3
  surname: Zongli Lin
  fullname: Zongli Lin
BookMark eNotkE9LAzEUxANWsK2eBU_5AlvzkjWbPcr6F4pe9Fxe0hdIyW5kkz2sn95qPf0YmBmGWbHFkAZi7BrEBkC0t91Dt5FCiE0L8sgzthKNEUprZZoFWwpooZIS9AVb5Xw4Go3Qesns2xQjd2koY4oRbYihzByHPc_lT31jCWngyfMYBsKR5zkX6jPPkz2QK7wkjnnueypjcBxdmbCkow3LNP5lL9m5x5jp6p9r9vn0-NG9VNv359fuflsFaGSptAelfe2M_50MHmxrvNkTtR73dQNCKlOLO90Yh2Bti0JZSa5G8KilIrVmN6feQES7rzH0OM670x3qB6FlWB8
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC.2000.912200
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 3259 vol.4
ExternalDocumentID 912200
GroupedDBID 29P
6IE
6IF
6IH
6IK
6IM
AAJGR
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
RIE
RIO
RNS
ID FETCH-LOGICAL-i172t-6f136f4c8f63871f1b98f8dee9fad4710238405678ca1bb9a03b2ec4a1fa623e3
IEDL.DBID RIE
ISBN 0780366387
9780780366381
ISSN 0191-2216
IngestDate Tue Aug 26 18:31:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i172t-6f136f4c8f63871f1b98f8dee9fad4710238405678ca1bb9a03b2ec4a1fa623e3
ParticipantIDs ieee_primary_912200
PublicationCentury 2000
PublicationDate 20000000
PublicationDateYYYYMMDD 2000-01-01
PublicationDate_xml – year: 2000
  text: 20000000
PublicationDecade 2000
PublicationTitle Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)
PublicationTitleAbbrev CDC
PublicationYear 2000
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008066
ssj0000454702
Score 1.3176763
Snippet This paper generalizes our recent results on the null controllable regions and the stabilizability of exponentially unstable linear systems subject to...
SourceID ieee
SourceType Publisher
StartPage 3254
SubjectTerms Control systems
Controllability
Hydraulic actuators
Limit-cycles
Linear feedback control systems
Linear systems
Lyapunov method
Open loop systems
State feedback
Vectors
Title Null controllability and stabilization of linear systems subject to asymmetric actuator saturation
URI https://ieeexplore.ieee.org/document/912200
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVoJ1iAUsS3PLAmjR03TeZCVSFRMVCpW2U7toSgCWqSofx67uzQAmJgiyNFSWzLfu987x0ht4YrywTPA1gddSAAggeSJTaQVhimuRpmConi4yyZzsXDYrhofbadFsYY45LPTIiX7iw_L3WDobJBxjgMaod0YJZ5qdY2nIJOcqNo5xyVRv6YEuhIwDlLHGNP4YNgvo1a452vNmstf1iUDcZ3Y6deCf27ftRccVvO5NBruSvnVIiZJq9hU6tQf_zycfzn3xyR_k7bR5-2u9Yx2TNFjxx8syU8IWoGvJS2Sexv3sh7Q2WRU4CS2PLSTVpaiiBVrqn3g65o1SiM69C6pLLarFZYrktTiSIV4Pa0QhdR92yfzCf3z-Np0NZiCF4A4tRBYlmcWKFTix3ILFNZatPcmMzKXCBMiYEqDmHr05IplckoVtxoIZmVgLBMfEq6RVmYM0KtifkwzZPMCiyWZeQoAZIJ646VMs1ZdE562FnLd2-3sfT9dPHn3Uuy77XxGBO5It163ZhrQAm1unHz4xPpGLd4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0UD-pFRYy_7cFrx9p1YzujBBWIB0i4kXZrE6Mww7YD_vV-bSeo8eBtXbJsa5t-733tex9Ct4pJTTnLCKyOKeEAwYmgkSZCc0VTJsNEGqI4HEX9CX-chtPaZ9tqYZRS9vCZ8syl3cvP8rQyqbJ2QhkM6jbagbDPQyfWWidUjJdcx994R8W-26gEQkIYo5Hl7DF8Esy4Tm2989WmtekP9ZN2965r9Suee9uPqis26PQOnJq7sF6F5qzJq1eV0ks_fjk5_vN_DlFro-7Dz-u4dYS21KKJ9r8ZEx4jOQJmiutj7G_OynuFxSLDACZNy4k3ca6xgaliiZ0jdIGLSprMDi5zLIrVfG4KdqVYGJkKsHtcGB9R-2wLTXr3426f1NUYyAuAnJJEmgaR5mmsTQdSTWUS6zhTKtEi4waoBEAWQwh-qaBSJsIPJFMpF1QLwFgqOEGNRb5QpwhrFbAwzqJEc1MuS4lOBDQTVh4tRJxR_ww1TWfN3p3hxsz10_mfd2_Qbn88HMwGD6OnC7TnlPImQ3KJGuWyUleAGUp5befKJ7eJusU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+39th+IEEE+Conference+on+Decision+and+Control+%28Cat.+No.00CH37187%29&rft.atitle=Null+controllability+and+stabilization+of+linear+systems+subject+to+asymmetric+actuator+saturation&rft.au=Tingshu+Hu&rft.au=Pitsillides%2C+A.N.&rft.au=Zongli+Lin&rft.date=2000-01-01&rft.pub=IEEE&rft.isbn=9780780366381&rft.issn=0191-2216&rft.volume=4&rft.spage=3254&rft.epage=3259+vol.4&rft_id=info:doi/10.1109%2FCDC.2000.912200&rft.externalDocID=912200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2216&client=summon