MAP state sequence estimation for jump Markov linear systems via the expectation-maximization algorithm
In a jump Markov linear system the state matrix, observation matrix and the noise covariance matrices evolve according to the realization of a finite state Markov chain. Given a realization of the observation process, the aim is to estimate the state of the Markov chain assuming known model paramete...
Saved in:
Published in | Proceedings of the 36th IEEE Conference on Decision and Control Vol. 2; pp. 1700 - 1705 vol.2 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
1997
|
Subjects | |
Online Access | Get full text |
ISBN | 0780341872 9780780341876 |
ISSN | 0191-2216 |
DOI | 10.1109/CDC.1997.657796 |
Cover
Abstract | In a jump Markov linear system the state matrix, observation matrix and the noise covariance matrices evolve according to the realization of a finite state Markov chain. Given a realization of the observation process, the aim is to estimate the state of the Markov chain assuming known model parameters. In this paper, we present three expectation maximization (EM) algorithms for state estimation to obtain maximum a posteriori state sequence estimates (MAPSE). Our first EM algorithm yields the MAPSE for the entire sequence of the finite state Markov chain. The second EM algorithm yields the MAPSE of the (continuous) state of the jump linear system. Our third EM algorithm computes the joint MAPSE of the finite and continuous states. The three EM algorithms, optimally combine a hidden Markov model estimator and a Kalman smoother in three different ways to compute the desired MAPSEs. |
---|---|
AbstractList | In a jump Markov linear system the state matrix, observation matrix and the noise covariance matrices evolve according to the realization of a finite state Markov chain. Given a realization of the observation process, the aim is to estimate the state of the Markov chain assuming known model parameters. In this paper, we present three expectation maximization (EM) algorithms for state estimation to obtain maximum a posteriori state sequence estimates (MAPSE). Our first EM algorithm yields the MAPSE for the entire sequence of the finite state Markov chain. The second EM algorithm yields the MAPSE of the (continuous) state of the jump linear system. Our third EM algorithm computes the joint MAPSE of the finite and continuous states. The three EM algorithms, optimally combine a hidden Markov model estimator and a Kalman smoother in three different ways to compute the desired MAPSEs. |
Author | Logothetis, A. Krishnamurthy, V. |
Author_xml | – sequence: 1 givenname: A. surname: Logothetis fullname: Logothetis, A. organization: Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia – sequence: 2 givenname: V. surname: Krishnamurthy fullname: Krishnamurthy, V. |
BookMark | eNotkEtPwkAUhScREwFdm7iaP9B677Sdx5LUZwLRha7J0N6BQdpiZyDgr5eIq7P6Tr5zRmzQdi0xdouQIoK5Lx_KFI1RqSyUMvKCjUBpyHLUSgzYENBgIgTKKzYKYQ0AGqQcsuVs8s5DtJF4oO8dtRVxCtE3Nvqu5a7r-XrXbPnM9l_dnm98S7bn4RgiNYHvveVxdSIOW6riH5I09uAb_3Pm7WbZ9T6ummt26ewm0M1_jtnn0-NH-ZJM355fy8k08ahETIoaT_IkIHfWkSzI5iBzUyhRgRTG1VkFC5c7vdASndI12hqFk6ArbUReZWN2d-71RDTf9qch_XF-_iT7BRvPWTU |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CDC.1997.657796 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 1705 vol.2 |
ExternalDocumentID | 657796 |
GroupedDBID | 29P 6IE 6IF 6IH 6IK 6IL 6IM AAJGR AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI RIE RIL RNS |
ID | FETCH-LOGICAL-i172t-5d1796e204fafe65ea40649572c0629fd3c0bf4f8b861f78d1ad12f608c8924c3 |
IEDL.DBID | RIE |
ISBN | 0780341872 9780780341876 |
ISSN | 0191-2216 |
IngestDate | Tue Aug 26 16:57:29 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i172t-5d1796e204fafe65ea40649572c0629fd3c0bf4f8b861f78d1ad12f608c8924c3 |
ParticipantIDs | ieee_primary_657796 |
PublicationCentury | 1900 |
PublicationDate | 19970000 |
PublicationDateYYYYMMDD | 1997-01-01 |
PublicationDate_xml | – year: 1997 text: 19970000 |
PublicationDecade | 1990 |
PublicationTitle | Proceedings of the 36th IEEE Conference on Decision and Control |
PublicationTitleAbbrev | CDC |
PublicationYear | 1997 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008066 ssj0000455054 |
Score | 1.2581377 |
Snippet | In a jump Markov linear system the state matrix, observation matrix and the noise covariance matrices evolve according to the realization of a finite state... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1700 |
SubjectTerms | Computational efficiency Costs Covariance matrix Expectation-maximization algorithms Hidden Markov models Iterative algorithms Linear systems Maximum likelihood estimation Signal processing algorithms State estimation |
Title | MAP state sequence estimation for jump Markov linear systems via the expectation-maximization algorithm |
URI | https://ieeexplore.ieee.org/document/657796 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Ek15UxPhOD167tKXtdo8GJcQEw0ESbqTb7SIqrIGFGH-9fSz4iAdv-zhstpnOfNOZ7xsArgnWXCRKI64yipjEDCWMM0QTllh_qRnxWnr9B9EbsvsRH1U6254LY4zxzWcmcpe-lp8VeuWOylqCx3EiaqBmrSxQtbbHKdixc11krJywxKFMadMRRCkRPmOX2PpsGdNKeGdzLyrJH4KTVue24wh8cRS-9WPmig853f3A5V56pULXafISrco00h-_dBz_-TcHoPnF7YODbdQ6BDtm3gB732QJj8CkfzOAnmkEN53W0IlxBJYjtDAXPlsrgI7nU6yhA6pqAYMm9BKupwpaVAnd7AAdCv1opt6ns4rxCdXrpFhMy6dZEwy7d4-dHqoGMqCpxTkl4pndvsJQzHKVG8GNsnDAZlgx1VjQJM_aGqc5y2UqBcljmRGVEZoLLLW0eZ5uH4P6vJibEwBFnAn3kovMSdbTVBomc2MI0RayYHIKGm7Fxm9Bc2McFuvsz6fnYDeIyrqDkQtQLxcrc2mhQpleeSP5BJh5t7I |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG5cDupFRYy7PXgttKXtdI4GNahAOEDCjXQ6HUQFDAzE-OvtMq7x4G2Ww2Sa9r3vLd_3ALggWHMRK424SiliEjMUM84QjVls7aVmxGvptdqi0WN3fd4vdLY9F8YY45vPTMVd-lp-OtULlyqrCh5FsVgF69btMx7IWp8JFez4uc43FmZY4lCotAEJopQIH7NLbK22jGghvfNxLwrRH4Ljav2q7ih8USV87cfUFe90brYDm3vutQpdr8lTZZEnFf32S8nxn_-zA8pf7D7Y-fRbu2DFTEpg65sw4R4Yti470HON4EevNXRyHIHnCC3QhY92H0DH9JkuoYOqagaDKvQcLkcKWlwJ3fQAHUr9aKxeR-OC8wnV83A6G-UP4zLo3Vx36w1UjGRAI4t0csRTe4CFoZhlKjOCG2UBgY2xIqqxoHGW1jROMpbJRAqSRTIlKiU0E1hqaSM9XdsHa5PpxBwAKKJUuJdcpE60nibSMJkZQ4i2oAWTQ1ByKzZ4Caobg7BYR38-PQcbjW6rOWjetu-PwWaQmHVpkhOwls8W5tQChzw58xvmHWgruv8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+IEEE+Conference+on+Decision+and+Control&rft.atitle=MAP+state+sequence+estimation+for+jump+Markov+linear+systems+via+the+expectation-maximization+algorithm&rft.au=Logothetis%2C+A.&rft.au=Krishnamurthy%2C+V.&rft.date=1997-01-01&rft.pub=IEEE&rft.isbn=9780780341876&rft.issn=0191-2216&rft.volume=2&rft.spage=1700&rft.epage=1705+vol.2&rft_id=info:doi/10.1109%2FCDC.1997.657796&rft.externalDocID=657796 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2216&client=summon |