MAP state sequence estimation for jump Markov linear systems via the expectation-maximization algorithm

In a jump Markov linear system the state matrix, observation matrix and the noise covariance matrices evolve according to the realization of a finite state Markov chain. Given a realization of the observation process, the aim is to estimate the state of the Markov chain assuming known model paramete...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 36th IEEE Conference on Decision and Control Vol. 2; pp. 1700 - 1705 vol.2
Main Authors Logothetis, A., Krishnamurthy, V.
Format Conference Proceeding
LanguageEnglish
Published IEEE 1997
Subjects
Online AccessGet full text
ISBN0780341872
9780780341876
ISSN0191-2216
DOI10.1109/CDC.1997.657796

Cover

Abstract In a jump Markov linear system the state matrix, observation matrix and the noise covariance matrices evolve according to the realization of a finite state Markov chain. Given a realization of the observation process, the aim is to estimate the state of the Markov chain assuming known model parameters. In this paper, we present three expectation maximization (EM) algorithms for state estimation to obtain maximum a posteriori state sequence estimates (MAPSE). Our first EM algorithm yields the MAPSE for the entire sequence of the finite state Markov chain. The second EM algorithm yields the MAPSE of the (continuous) state of the jump linear system. Our third EM algorithm computes the joint MAPSE of the finite and continuous states. The three EM algorithms, optimally combine a hidden Markov model estimator and a Kalman smoother in three different ways to compute the desired MAPSEs.
AbstractList In a jump Markov linear system the state matrix, observation matrix and the noise covariance matrices evolve according to the realization of a finite state Markov chain. Given a realization of the observation process, the aim is to estimate the state of the Markov chain assuming known model parameters. In this paper, we present three expectation maximization (EM) algorithms for state estimation to obtain maximum a posteriori state sequence estimates (MAPSE). Our first EM algorithm yields the MAPSE for the entire sequence of the finite state Markov chain. The second EM algorithm yields the MAPSE of the (continuous) state of the jump linear system. Our third EM algorithm computes the joint MAPSE of the finite and continuous states. The three EM algorithms, optimally combine a hidden Markov model estimator and a Kalman smoother in three different ways to compute the desired MAPSEs.
Author Logothetis, A.
Krishnamurthy, V.
Author_xml – sequence: 1
  givenname: A.
  surname: Logothetis
  fullname: Logothetis, A.
  organization: Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia
– sequence: 2
  givenname: V.
  surname: Krishnamurthy
  fullname: Krishnamurthy, V.
BookMark eNotkEtPwkAUhScREwFdm7iaP9B677Sdx5LUZwLRha7J0N6BQdpiZyDgr5eIq7P6Tr5zRmzQdi0xdouQIoK5Lx_KFI1RqSyUMvKCjUBpyHLUSgzYENBgIgTKKzYKYQ0AGqQcsuVs8s5DtJF4oO8dtRVxCtE3Nvqu5a7r-XrXbPnM9l_dnm98S7bn4RgiNYHvveVxdSIOW6riH5I09uAb_3Pm7WbZ9T6ummt26ewm0M1_jtnn0-NH-ZJM355fy8k08ahETIoaT_IkIHfWkSzI5iBzUyhRgRTG1VkFC5c7vdASndI12hqFk6ArbUReZWN2d-71RDTf9qch_XF-_iT7BRvPWTU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CDC.1997.657796
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1705 vol.2
ExternalDocumentID 657796
GroupedDBID 29P
6IE
6IF
6IH
6IK
6IL
6IM
AAJGR
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
RIE
RIL
RNS
ID FETCH-LOGICAL-i172t-5d1796e204fafe65ea40649572c0629fd3c0bf4f8b861f78d1ad12f608c8924c3
IEDL.DBID RIE
ISBN 0780341872
9780780341876
ISSN 0191-2216
IngestDate Tue Aug 26 16:57:29 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i172t-5d1796e204fafe65ea40649572c0629fd3c0bf4f8b861f78d1ad12f608c8924c3
ParticipantIDs ieee_primary_657796
PublicationCentury 1900
PublicationDate 19970000
PublicationDateYYYYMMDD 1997-01-01
PublicationDate_xml – year: 1997
  text: 19970000
PublicationDecade 1990
PublicationTitle Proceedings of the 36th IEEE Conference on Decision and Control
PublicationTitleAbbrev CDC
PublicationYear 1997
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008066
ssj0000455054
Score 1.2581377
Snippet In a jump Markov linear system the state matrix, observation matrix and the noise covariance matrices evolve according to the realization of a finite state...
SourceID ieee
SourceType Publisher
StartPage 1700
SubjectTerms Computational efficiency
Costs
Covariance matrix
Expectation-maximization algorithms
Hidden Markov models
Iterative algorithms
Linear systems
Maximum likelihood estimation
Signal processing algorithms
State estimation
Title MAP state sequence estimation for jump Markov linear systems via the expectation-maximization algorithm
URI https://ieeexplore.ieee.org/document/657796
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Ek15UxPhOD167tKXtdo8GJcQEw0ESbqTb7SIqrIGFGH-9fSz4iAdv-zhstpnOfNOZ7xsArgnWXCRKI64yipjEDCWMM0QTllh_qRnxWnr9B9EbsvsRH1U6254LY4zxzWcmcpe-lp8VeuWOylqCx3EiaqBmrSxQtbbHKdixc11krJywxKFMadMRRCkRPmOX2PpsGdNKeGdzLyrJH4KTVue24wh8cRS-9WPmig853f3A5V56pULXafISrco00h-_dBz_-TcHoPnF7YODbdQ6BDtm3gB732QJj8CkfzOAnmkEN53W0IlxBJYjtDAXPlsrgI7nU6yhA6pqAYMm9BKupwpaVAnd7AAdCv1opt6ns4rxCdXrpFhMy6dZEwy7d4-dHqoGMqCpxTkl4pndvsJQzHKVG8GNsnDAZlgx1VjQJM_aGqc5y2UqBcljmRGVEZoLLLW0eZ5uH4P6vJibEwBFnAn3kovMSdbTVBomc2MI0RayYHIKGm7Fxm9Bc2McFuvsz6fnYDeIyrqDkQtQLxcrc2mhQpleeSP5BJh5t7I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG5cDupFRYy7PXgttKXtdI4GNahAOEDCjXQ6HUQFDAzE-OvtMq7x4G2Ww2Sa9r3vLd_3ALggWHMRK424SiliEjMUM84QjVls7aVmxGvptdqi0WN3fd4vdLY9F8YY45vPTMVd-lp-OtULlyqrCh5FsVgF69btMx7IWp8JFez4uc43FmZY4lCotAEJopQIH7NLbK22jGghvfNxLwrRH4Ljav2q7ih8USV87cfUFe90brYDm3vutQpdr8lTZZEnFf32S8nxn_-zA8pf7D7Y-fRbu2DFTEpg65sw4R4Yti470HON4EevNXRyHIHnCC3QhY92H0DH9JkuoYOqagaDKvQcLkcKWlwJ3fQAHUr9aKxeR-OC8wnV83A6G-UP4zLo3Vx36w1UjGRAI4t0csRTe4CFoZhlKjOCG2UBgY2xIqqxoHGW1jROMpbJRAqSRTIlKiU0E1hqaSM9XdsHa5PpxBwAKKJUuJdcpE60nibSMJkZQ4i2oAWTQ1ByKzZ4Caobg7BYR38-PQcbjW6rOWjetu-PwWaQmHVpkhOwls8W5tQChzw58xvmHWgruv8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+IEEE+Conference+on+Decision+and+Control&rft.atitle=MAP+state+sequence+estimation+for+jump+Markov+linear+systems+via+the+expectation-maximization+algorithm&rft.au=Logothetis%2C+A.&rft.au=Krishnamurthy%2C+V.&rft.date=1997-01-01&rft.pub=IEEE&rft.isbn=9780780341876&rft.issn=0191-2216&rft.volume=2&rft.spage=1700&rft.epage=1705+vol.2&rft_id=info:doi/10.1109%2FCDC.1997.657796&rft.externalDocID=657796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2216&client=summon