Shape indexing using approximate nearest-neighbour search in high-dimensional spaces

Shape indexing is a way of making rapid associations between features detected in an image and object models that could have produced them. When model databases are large, the use of high-dimensional features is critical, due to the improved level of discrimination they can provide. Unfortunately, f...

Full description

Saved in:
Bibliographic Details
Published inProceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 1000 - 1006
Main Authors Beis, J.S., Lowe, D.G.
Format Conference Proceeding
LanguageEnglish
Published IEEE 1997
Subjects
Online AccessGet full text
ISBN9780818678226
0818678224
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.1997.609451

Cover

Abstract Shape indexing is a way of making rapid associations between features detected in an image and object models that could have produced them. When model databases are large, the use of high-dimensional features is critical, due to the improved level of discrimination they can provide. Unfortunately, finding the nearest neighbour to a query point rapidly becomes inefficient as the dimensionality of the feature space increases. Past indexing methods have used hash tables for hypothesis recovery, but only in low-dimensional situations. In this paper we show that a new variant of the k-d tree search algorithm makes indexing in higher-dimensional spaces practical. This Best Bin First, or BBF search is an approximate algorithm which finds the nearest neighbour for a large fraction of the queries, and a very close neighbour in the remaining cases. The technique has been integrated into a fully developed recognition system, which is able to detect complex objects in real, cluttered scenes in just a few seconds.
AbstractList Shape indexing is a way of making rapid associations between features detected in an image and object models that could have produced them. When model databases are large, the use of high-dimensional features is critical, due to the improved level of discrimination they can provide. Unfortunately, finding the nearest neighbour to a query point rapidly becomes inefficient as the dimensionality of the feature space increases. Past indexing methods have used hash tables for hypothesis recovery, but only in low-dimensional situations. In this paper we show that a new variant of the k-d tree search algorithm makes indexing in higher-dimensional spaces practical. This Best Bin First, or BBF search is an approximate algorithm which finds the nearest neighbour for a large fraction of the queries, and a very close neighbour in the remaining cases. The technique has been integrated into a fully developed recognition system, which is able to detect complex objects in real, cluttered scenes in just a few seconds.
Author Lowe, D.G.
Beis, J.S.
Author_xml – sequence: 1
  givenname: J.S.
  surname: Beis
  fullname: Beis, J.S.
  organization: Dept. of Comput. Sci., British Columbia Univ., Vancouver, BC, Canada
– sequence: 2
  givenname: D.G.
  surname: Lowe
  fullname: Lowe, D.G.
BookMark eNpNUE1Lw0AUXLSCbe1dPOUPJO7bl-zHUYpfUFC0ei2bzUuz0m5CNoX6743Ug5cZmGGGYWZsEtpAjF0DzwC4uV1-vr5lYIzKJDd5AWdsClxiKg2Yc7YwSnMNWiothJz88y7ZLMYvzgUqwads_d7YjhIfKjr6sE0O8Rdt1_Xt0e_tQEkg21Mc0kB-25TtoU_iqLhmzCTNKKWV31OIvg12l8TOOopX7KK2u0iLP56zj4f79fIpXb08Pi_vVqkHJYa0EOjqGkijlhpzAMKCl6JwxoKzmNe61IUj0ErpSpOqUSEplHmlMHe1wDm7OfV6Itp0_Ti4_96c_sAfOUlUig
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CVPR.1997.609451
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 1006
ExternalDocumentID 609451
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
6IL
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIL
RNS
ID FETCH-LOGICAL-i172t-523cff1e838683411e350b25c9a1ca34f8b85ce18778d8e7f373e7364d734cf23
IEDL.DBID RIE
ISBN 9780818678226
0818678224
ISSN 1063-6919
IngestDate Tue Aug 26 18:24:06 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i172t-523cff1e838683411e350b25c9a1ca34f8b85ce18778d8e7f373e7364d734cf23
PageCount 7
ParticipantIDs ieee_primary_609451
PublicationCentury 1900
PublicationDate 19970000
PublicationDateYYYYMMDD 1997-01-01
PublicationDate_xml – year: 1997
  text: 19970000
PublicationDecade 1990
PublicationTitle Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 1997
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0003211698
ssj0000558124
Score 1.9066557
Snippet Shape indexing is a way of making rapid associations between features detected in an image and object models that could have produced them. When model...
SourceID ieee
SourceType Publisher
StartPage 1000
SubjectTerms Computer science
Computer vision
Image databases
Indexing
Layout
Neural networks
Object detection
Shape
Spatial databases
Tree data structures
Title Shape indexing using approximate nearest-neighbour search in high-dimensional spaces
URI https://ieeexplore.ieee.org/document/609451
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6k6fpnPhNDl7TtU2bpufhGIIydJPdRpu86BC64ToQ_3rzkq6iePDWhIbQkNf3-fs9Qm6yIhRgtGYGcsUSDtLKHJQshbzksTacFwhOvn8Q41lyN0_nDc-2w8IAgCs-gwAfXS5fr9QWQ2UDYX0RhEvv21vmoVptOCVMU1RV7Zhbx0bkbUIhxmYsLvEpOBN5lDsqSCRzwyrKhohnN27TmWE-GD5PHhHRlwV-8x9NWJwOGnU9uHvjqAux9OQt2NZloD5_ETv-8_MOSf8b7EcnrRo7IntQ9Ui3sU5pI_sbO7VrALGbOybTp9diDdQxLtq1FIvoX6ijKf9YWlMYaIUUuZuaVRiBxQAq9aJl11BkSmYauwt4ZhBqf252pz6ZjW6nwzFr2jSwpbV-anRllTERSC6FtEoxAp6GZZyqvIhUwRMjS5kqiGSWSS0hMzzjkHGR6IwnysT8hHSqVQWnhAqjdFGkOg-FSUSspDLCvq4ibfVoKeCM9PDYFmvPxLHwJ3b-5-wFOfBUsxguuSSd-n0LV9aAqMtrd3W-APVYvrI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD3pS58Rvc_Da2jZNmp6HY-o2hm7ibbTJi4rQDdeB-Nebl3YVxYO3JjSEhry-z9_vEXKZZIEAo7VnIFVezEBamYPc45DmLNKGsQzBycOR6E_j2yf-VPNsOywMALjiM_Dx0eXy9VytMFR2JawvgnDpTav2Y16BtZqASsA5KqtmzKxrI9ImpRBhOxaX-hTME2mYOjJIpHPDOsqaimc9bhKaQXrVfRzfI6Yv8avtf7RhcVqot1PBu5eOvBCLT978VZn76vMXteM_P3CXdL7hfnTcKLI9sgFFm-zU9imtpX9pp9YtINZz-2Ty8JItgDrORbuWYhn9M3VE5R-v1hgGWiBJ7rL0CozBYgiVVsJl11DkSvY09heouEGo_b3ZnTpk2ruedPte3ajBe7X2T4nOrDImBMmkkFYthsB4kEdcpVmoMhYbmUuuIJRJIrWExLCEQcJErBMWKxOxA9Iq5gUcEiqM0lnGdRoIE4tISWWEfV2F2mrSXMARaeOxzRYVF8esOrHjP2cvyFZ_MhzMBjejuxOyXRHPYvDklLTK9xWcWXOizM_dNfoCJbHB_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Shape+indexing+using+approximate+nearest-neighbour+search+in+high-dimensional+spaces&rft.au=Beis%2C+J.S.&rft.au=Lowe%2C+D.G.&rft.date=1997-01-01&rft.pub=IEEE&rft.isbn=9780818678226&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1000&rft.epage=1006&rft_id=info:doi/10.1109%2FCVPR.1997.609451&rft.externalDocID=609451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon