Constrained clustering via spectral regularization
We propose a novel framework for constrained spectral clustering with pairwise constraints which specify whether two objects belong to the same cluster or not. Unlike previous methods that modify the similarity matrix with pairwise constraints, we adapt the spectral embedding towards an ideal embedd...
Saved in:
Published in | 2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 421 - 428 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English Japanese |
Published |
IEEE
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a novel framework for constrained spectral clustering with pairwise constraints which specify whether two objects belong to the same cluster or not. Unlike previous methods that modify the similarity matrix with pairwise constraints, we adapt the spectral embedding towards an ideal embedding as consistent with the pairwise constraints as possible. Our formulation leads to a small semidefinite program whose complexity is independent of the number of objects in the data set and the number of pairwise constraints, making it scalable to large-scale problems. The proposed approach is applicable directly to multi-class problems, handles both must-link and cannot-link constraints, and can effectively propagate pairwise constraints. Extensive experiments on real image data and UCI data have demonstrated the efficacy of our algorithm. |
---|---|
AbstractList | We propose a novel framework for constrained spectral clustering with pairwise constraints which specify whether two objects belong to the same cluster or not. Unlike previous methods that modify the similarity matrix with pairwise constraints, we adapt the spectral embedding towards an ideal embedding as consistent with the pairwise constraints as possible. Our formulation leads to a small semidefinite program whose complexity is independent of the number of objects in the data set and the number of pairwise constraints, making it scalable to large-scale problems. The proposed approach is applicable directly to multi-class problems, handles both must-link and cannot-link constraints, and can effectively propagate pairwise constraints. Extensive experiments on real image data and UCI data have demonstrated the efficacy of our algorithm. |
Author | Jianzhuang Liu Zhenguo Li Xiaoou Tang |
Author_xml | – sequence: 1 surname: Zhenguo Li fullname: Zhenguo Li email: zgli@ie.cuhk.edu.hk organization: Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Hong Kong, China – sequence: 2 surname: Jianzhuang Liu fullname: Jianzhuang Liu email: jzliu@ie.cuhk.edu.hk organization: Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Hong Kong, China – sequence: 3 surname: Xiaoou Tang fullname: Xiaoou Tang email: xtang@ie.cuhk.edu.hk organization: Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Hong Kong, China |
BookMark | eNpNz91KwzAYxvGoE1znLkA86Q20vkmar0MpToWBIurpSJs3I1LTkXSCXr2CEzx6Dn7wwL8gszhGJOSCQk0pmKv29fGpZgCmFgykFuyILI3StGFNw42h9JjMKUheSUPNCSn-gLHZPzgjRc5vAIwrBnPC2jHmKdkQ0ZX9sM8TphC35UewZd5h_0NDmXC7H2wKX3YKYzwnp94OGZeHXZCX1c1ze1etH27v2-t1FaiiU-UZemM7CZI67Hknle6k8KLTnAE6z3sOHXgtnNHK9J5bLQy1BrWzinvHF-Ty9zcg4maXwrtNn5tDO_8GPjtLvg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2009.5206852 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781424439911 1424439914 |
EISSN | 1063-6919 |
EndPage | 428 |
ExternalDocumentID | 5206852 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i171t-f2ef9ab6061dec3b678b65f5b8320edf3c30b0f85d9879cf3a8591a9e8da73fd3 |
IEDL.DBID | RIE |
ISBN | 1424439922 9781424439928 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:43:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i171t-f2ef9ab6061dec3b678b65f5b8320edf3c30b0f85d9879cf3a8591a9e8da73fd3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_5206852 |
PublicationCentury | 2000 |
PublicationDate | 2009-06 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06 |
PublicationDecade | 2000 |
PublicationTitle | 2009 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0000453166 ssj0003211698 |
Score | 1.997262 |
Snippet | We propose a novel framework for constrained spectral clustering with pairwise constraints which specify whether two objects belong to the same cluster or not.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 421 |
SubjectTerms | Clustering algorithms Computer vision Current measurement Data analysis Data mining Feature extraction Glass Kernel Large-scale systems Pattern recognition |
Title | Constrained clustering via spectral regularization |
URI | https://ieeexplore.ieee.org/document/5206852 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ09TN_E3PXi0W9O0aXMejiFMhjjZbTTJCwzHJrP14F_vS5pWFA_emlDaJm1f3o9830fIbZ5IdLtNGuYGMEBJBA8l6DTUWcxzECk60RbgPHvk00XysEyXHXLXYmEAwG0-g6E9dLV8vVOVTZWN0jjieYoG9wADtxqr1eZT0DVh1Lsmts0wsuGirSjEVo3FVT45C7mgogF5OWLWhvvJt3Nf_qSRGI1f5k81raW_-w8ZFrcKTXpk1jx_vfnkdViVcqg-f1E7_neAR2TwjfcL5u1Kdkw6sD0hPe-gBv73f8euRgOi6euT2Cp-Op0JPFNtKsu7gNcIPtZF4FCc-2IT7J3g_d5DPgdkMbl_Hk9Dr8MQrmlGy9DEYEQhMdShGhSTuL5Jju9XojWIQBumWCQjk6da5JlQhhWWFK8QkOsiY0azU9Ld7rZwRgLDE53IWIHl4GGKFgYNNaSxYpQCRo7npG9nZfVWU22s_IRc_N19SQ7r4o5NilyRbrmv4Bp9hFLeuI_jCxf6snE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWAq0CLeZGAkJY5jN54RqDyKKlQQWxXbZ6mialFoGfj1nB0nCMTAFp-iRHaie_j8fR8hZ3mmMO22PM4tYIGSSRErMDw2_VTkIDkm0Q7gPHwQg6fs9oW_rJHzBgsDAP7wGfTcpe_lm4Veua2yC54mIufocNcx7nNaobWaHRVMThgNyYkbM6xthGx6CqnTY_G9T8FiIamsYV6emrVmfwrjPDRAaSIvLp9HjxWxZXj_DyEWH4eu22RYz6A6fvLaWy1VT3_-Inf87xS3SPcb8ReNmli2TdZgvkPaIUWNggN4R1OtAlHbOiR1mp9eaQLv1LOVY17AZ0Qf0yLyOM6ymEWll7wvA-izS56ur8aXgzgoMcRT2qfL2KZgZaGw2KEGNFMY4ZTAL6zQHyRgLNMsUYnNuZF5X2rLCkeLV0jITdFn1rBd0pov5rBHIisyk6lUg2PhYZoWFl018FQzSgFrx33ScasyeavINiZhQQ7-Np-SjcF4eD-5v3m4OySbVavHbZEckdayXMExZgxLdeJ_lC-fRLW6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Constrained+clustering+via+spectral+regularization&rft.au=Zhenguo+Li&rft.au=Jianzhuang+Liu&rft.au=Xiaoou+Tang&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=421&rft.epage=428&rft_id=info:doi/10.1109%2FCVPR.2009.5206852&rft.externalDocID=5206852 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |