Constrained clustering via spectral regularization

We propose a novel framework for constrained spectral clustering with pairwise constraints which specify whether two objects belong to the same cluster or not. Unlike previous methods that modify the similarity matrix with pairwise constraints, we adapt the spectral embedding towards an ideal embedd...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 421 - 428
Main Authors Zhenguo Li, Jianzhuang Liu, Xiaoou Tang
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a novel framework for constrained spectral clustering with pairwise constraints which specify whether two objects belong to the same cluster or not. Unlike previous methods that modify the similarity matrix with pairwise constraints, we adapt the spectral embedding towards an ideal embedding as consistent with the pairwise constraints as possible. Our formulation leads to a small semidefinite program whose complexity is independent of the number of objects in the data set and the number of pairwise constraints, making it scalable to large-scale problems. The proposed approach is applicable directly to multi-class problems, handles both must-link and cannot-link constraints, and can effectively propagate pairwise constraints. Extensive experiments on real image data and UCI data have demonstrated the efficacy of our algorithm.
AbstractList We propose a novel framework for constrained spectral clustering with pairwise constraints which specify whether two objects belong to the same cluster or not. Unlike previous methods that modify the similarity matrix with pairwise constraints, we adapt the spectral embedding towards an ideal embedding as consistent with the pairwise constraints as possible. Our formulation leads to a small semidefinite program whose complexity is independent of the number of objects in the data set and the number of pairwise constraints, making it scalable to large-scale problems. The proposed approach is applicable directly to multi-class problems, handles both must-link and cannot-link constraints, and can effectively propagate pairwise constraints. Extensive experiments on real image data and UCI data have demonstrated the efficacy of our algorithm.
Author Jianzhuang Liu
Zhenguo Li
Xiaoou Tang
Author_xml – sequence: 1
  surname: Zhenguo Li
  fullname: Zhenguo Li
  email: zgli@ie.cuhk.edu.hk
  organization: Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 2
  surname: Jianzhuang Liu
  fullname: Jianzhuang Liu
  email: jzliu@ie.cuhk.edu.hk
  organization: Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 3
  surname: Xiaoou Tang
  fullname: Xiaoou Tang
  email: xtang@ie.cuhk.edu.hk
  organization: Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Hong Kong, China
BookMark eNpNz91KwzAYxvGoE1znLkA86Q20vkmar0MpToWBIurpSJs3I1LTkXSCXr2CEzx6Dn7wwL8gszhGJOSCQk0pmKv29fGpZgCmFgykFuyILI3StGFNw42h9JjMKUheSUPNCSn-gLHZPzgjRc5vAIwrBnPC2jHmKdkQ0ZX9sM8TphC35UewZd5h_0NDmXC7H2wKX3YKYzwnp94OGZeHXZCX1c1ze1etH27v2-t1FaiiU-UZemM7CZI67Hknle6k8KLTnAE6z3sOHXgtnNHK9J5bLQy1BrWzinvHF-Ty9zcg4maXwrtNn5tDO_8GPjtLvg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2009.5206852
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781424439911
1424439914
EISSN 1063-6919
EndPage 428
ExternalDocumentID 5206852
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i171t-f2ef9ab6061dec3b678b65f5b8320edf3c30b0f85d9879cf3a8591a9e8da73fd3
IEDL.DBID RIE
ISBN 1424439922
9781424439928
ISSN 1063-6919
IngestDate Wed Aug 27 02:43:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i171t-f2ef9ab6061dec3b678b65f5b8320edf3c30b0f85d9879cf3a8591a9e8da73fd3
PageCount 8
ParticipantIDs ieee_primary_5206852
PublicationCentury 2000
PublicationDate 2009-06
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06
PublicationDecade 2000
PublicationTitle 2009 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000453166
ssj0003211698
Score 1.997262
Snippet We propose a novel framework for constrained spectral clustering with pairwise constraints which specify whether two objects belong to the same cluster or not....
SourceID ieee
SourceType Publisher
StartPage 421
SubjectTerms Clustering algorithms
Computer vision
Current measurement
Data analysis
Data mining
Feature extraction
Glass
Kernel
Large-scale systems
Pattern recognition
Title Constrained clustering via spectral regularization
URI https://ieeexplore.ieee.org/document/5206852
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ09TN_E3PXi0W9O0aXMejiFMhjjZbTTJCwzHJrP14F_vS5pWFA_emlDaJm1f3o9830fIbZ5IdLtNGuYGMEBJBA8l6DTUWcxzECk60RbgPHvk00XysEyXHXLXYmEAwG0-g6E9dLV8vVOVTZWN0jjieYoG9wADtxqr1eZT0DVh1Lsmts0wsuGirSjEVo3FVT45C7mgogF5OWLWhvvJt3Nf_qSRGI1f5k81raW_-w8ZFrcKTXpk1jx_vfnkdViVcqg-f1E7_neAR2TwjfcL5u1Kdkw6sD0hPe-gBv73f8euRgOi6euT2Cp-Op0JPFNtKsu7gNcIPtZF4FCc-2IT7J3g_d5DPgdkMbl_Hk9Dr8MQrmlGy9DEYEQhMdShGhSTuL5Jju9XojWIQBumWCQjk6da5JlQhhWWFK8QkOsiY0azU9Ld7rZwRgLDE53IWIHl4GGKFgYNNaSxYpQCRo7npG9nZfVWU22s_IRc_N19SQ7r4o5NilyRbrmv4Bp9hFLeuI_jCxf6snE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWAq0CLeZGAkJY5jN54RqDyKKlQQWxXbZ6mialFoGfj1nB0nCMTAFp-iRHaie_j8fR8hZ3mmMO22PM4tYIGSSRErMDw2_VTkIDkm0Q7gPHwQg6fs9oW_rJHzBgsDAP7wGfTcpe_lm4Veua2yC54mIufocNcx7nNaobWaHRVMThgNyYkbM6xthGx6CqnTY_G9T8FiIamsYV6emrVmfwrjPDRAaSIvLp9HjxWxZXj_DyEWH4eu22RYz6A6fvLaWy1VT3_-Inf87xS3SPcb8ReNmli2TdZgvkPaIUWNggN4R1OtAlHbOiR1mp9eaQLv1LOVY17AZ0Qf0yLyOM6ymEWll7wvA-izS56ur8aXgzgoMcRT2qfL2KZgZaGw2KEGNFMY4ZTAL6zQHyRgLNMsUYnNuZF5X2rLCkeLV0jITdFn1rBd0pov5rBHIisyk6lUg2PhYZoWFl018FQzSgFrx33ScasyeavINiZhQQ7-Np-SjcF4eD-5v3m4OySbVavHbZEckdayXMExZgxLdeJ_lC-fRLW6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Constrained+clustering+via+spectral+regularization&rft.au=Zhenguo+Li&rft.au=Jianzhuang+Liu&rft.au=Xiaoou+Tang&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=421&rft.epage=428&rft_id=info:doi/10.1109%2FCVPR.2009.5206852&rft.externalDocID=5206852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon