EM algorithms of Gaussian mixture model and hidden Markov model

The HMM (hidden Markov model) is a probabilistic model of the joint probability of a collection of random variables with both observations and states. The GMM (Gaussian mixture model) is a finite mixture probability distribution model. Although the two models have a close relationship, they are alwa...

Full description

Saved in:
Bibliographic Details
Published in2001 International Conference on Image Processing Vol. 1; pp. 145 - 148 vol.1
Main Authors Guorong Xuan, Wei Zhang, Peiqi Chai
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 2001
Subjects
Online AccessGet full text
ISBN0780367251
9780780367258
DOI10.1109/ICIP.2001.958974

Cover

Abstract The HMM (hidden Markov model) is a probabilistic model of the joint probability of a collection of random variables with both observations and states. The GMM (Gaussian mixture model) is a finite mixture probability distribution model. Although the two models have a close relationship, they are always discussed independently and separately. The EM (expectation-maximum) algorithm is a general method to improve the descent algorithm for finding the maximum likelihood estimation. The EM of HMM and the EM of GMM have similar formulae. Two points are proposed in this paper. One is that the EM of GMM can be regarded as a special EM of HMM. The other is that the EM algorithm of GMM based on symbols is faster in implementation than the EM algorithm of GMM based on samples (or on observation) traditionally.
AbstractList The HMM (hidden Markov model) is a probabilistic model of the joint probability of a collection of random variables with both observations and states. The GMM (Gaussian mixture model) is a finite mixture probability distribution model. Although the two models have a close relationship, they are always discussed independently and separately. The EM (expectation-maximum) algorithm is a general method to improve the descent algorithm for finding the maximum likelihood estimation. The EM of HMM and the EM of GMM have similar formulae. Two points are proposed in this paper. One is that the EM of GMM can be regarded as a special EM of HMM. The other is that the EM algorithm of GMM based on symbols is faster in implementation than the EM algorithm of GMM based on samples (or on observation) traditionally.
Author Guorong Xuan
Wei Zhang
Peiqi Chai
Author_xml – sequence: 1
  surname: Guorong Xuan
  fullname: Guorong Xuan
  organization: Dept. of Comput. Sci., Tongji Univ., Shanghai, China
– sequence: 2
  surname: Wei Zhang
  fullname: Wei Zhang
– sequence: 3
  surname: Peiqi Chai
  fullname: Peiqi Chai
BookMark eNotj81KxDAYRQMq6PzsxVVeoDVpkiZZiZRxLMygi3E9fGkSJ9o20nRE395CvZsLZ3G4d4Eu-9g7hG4pySkl-r6u6te8IITmWigt-QVaEKkIK2Uh6DVap_RBpnDBJ3SDHjZ7DO17HMJ46hKOHm_hnFKAHnfhZzwPDnfRuhZDb_EpWOt6vIfhM37PfIWuPLTJrf97id6eNofqOdu9bOvqcZcFKsmYMWUYABhmtWZFYUtvDDGlBs6M8cIoyQuvWUOpLa2admtBfeOFboSgSgq2RHezNzjnjl9D6GD4Pc4X2R-e80hC
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2001.958974
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 148 vol.1
ExternalDocumentID 958974
GroupedDBID 6IE
6IH
6IK
6IL
AAJGR
AAVQY
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i170t-38b3aaab3d99322d6fbb0b69a43bbf5b8742f93c11d6d8897951fcf59c5518753
IEDL.DBID RIE
ISBN 0780367251
9780780367258
IngestDate Tue Aug 26 17:34:01 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i170t-38b3aaab3d99322d6fbb0b69a43bbf5b8742f93c11d6d8897951fcf59c5518753
ParticipantIDs ieee_primary_958974
PublicationCentury 2000
PublicationDate 20010000
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – year: 2001
  text: 20010000
PublicationDecade 2000
PublicationTitle 2001 International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2001
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000454367
Score 1.8366839
Snippet The HMM (hidden Markov model) is a probabilistic model of the joint probability of a collection of random variables with both observations and states. The GMM...
SourceID ieee
SourceType Publisher
StartPage 145
SubjectTerms Computer science
Covariance matrix
Electronic mail
Gaussian distribution
Hidden Markov models
Histograms
Maximum likelihood estimation
Parameter estimation
Probability distribution
Random variables
Title EM algorithms of Gaussian mixture model and hidden Markov model
URI https://ieeexplore.ieee.org/document/958974
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJ6ZCKeItD6xJ83TtiaFqaZFAHajUrfL5QStoUrUJQvx6bCctAjEgZXA8WJbt5L7z3fcdQrccEqFZQD0FRHiJBurRJIw8TSE1aESAlk7t84mMpsnDLJ3VOtuOC6OUcslnyrdNF8uXuSjtVVmXpdTA3wZqmFNWUbX21ylWSS4mPeeYU_NX7hm7Xevr7N7pLkoZsO64P55Y5zD0qzF_1FZxpmXYqjjbW6dIaDNKXv2yAF98_tJr_Oesj1Dnm8OHJ3vrdIwOVNZGrV0RB1x_0yfobvCI-dtLvlkWi9UW5xrf83JrqZV4tfyw8QXsquVgnkm8sIIjGbYEn_y96u-g6XDw3B95dVUFbxn2gsKLKcScc4ilgSZRJIkGCIAwnsQAOgVqnGXNYhGGkkhqpm4wmBY6ZcKKtxnv5hQ1szxTZwgnRIacEiYlMbAKJNMRl4qkkqhYBoE6R227HPN1JZwxr1bi4s_eS3RYpXfZ5wo1i02pro29L-DG7fQXRpWnlw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD3pCEeNve_C6sbGttCcPBAQFwgESbqRvbZUom4HNGP96225gNB5Mdth6WJo22_e9vvd9D6FbDmGsmEcdCSR2QgXUoaHfdBSFSLORGJSwbp8j0puGD7NoVvpsWy2MlNIWn0nX3Npcvkjj3ByVNVhENf3dRXsa9sOoEGttD1SMl1xAWjY0p_q_3NLIXTrsbJ7pJk_psUa_3R-b8NB3i7f-6K5iwaVbLVTba-tJaGpKXtw8Azf-_OXY-M95H6L6t4oPj7f4dIR2ZFJD1U0bB1x-1cforjPE_PUpXS2y5-Uapwrf83xtxJV4ufgwGQZs--Vgngj8bCxHEmwkPul7MV5H025n0u45ZV8FZ-G3vMwJKASccwiEJifNpiAKwAPCeBgAqAioDpcVC2LfF0RQPXXNwlSsIhYb-zYd35ygSpIm8hThkAifU8KEIJpYgWCqyYUkkSAyEJ4nz1DNLMf8rbDOmBcrcf7n6A3a702Gg_mgP3q8QAdFsZe5LlElW-XySqN_Btd2178AQquq5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2001+International+Conference+on+Image+Processing&rft.atitle=EM+algorithms+of+Gaussian+mixture+model+and+hidden+Markov+model&rft.au=Guorong+Xuan&rft.au=Wei+Zhang&rft.au=Peiqi+Chai&rft.date=2001-01-01&rft.pub=IEEE&rft.isbn=9780780367258&rft.volume=1&rft.spage=145&rft.epage=148+vol.1&rft_id=info:doi/10.1109%2FICIP.2001.958974&rft.externalDocID=958974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780367258/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780367258/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780367258/sc.gif&client=summon&freeimage=true