EM algorithms of Gaussian mixture model and hidden Markov model
The HMM (hidden Markov model) is a probabilistic model of the joint probability of a collection of random variables with both observations and states. The GMM (Gaussian mixture model) is a finite mixture probability distribution model. Although the two models have a close relationship, they are alwa...
Saved in:
Published in | 2001 International Conference on Image Processing Vol. 1; pp. 145 - 148 vol.1 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English Japanese |
Published |
IEEE
2001
|
Subjects | |
Online Access | Get full text |
ISBN | 0780367251 9780780367258 |
DOI | 10.1109/ICIP.2001.958974 |
Cover
Abstract | The HMM (hidden Markov model) is a probabilistic model of the joint probability of a collection of random variables with both observations and states. The GMM (Gaussian mixture model) is a finite mixture probability distribution model. Although the two models have a close relationship, they are always discussed independently and separately. The EM (expectation-maximum) algorithm is a general method to improve the descent algorithm for finding the maximum likelihood estimation. The EM of HMM and the EM of GMM have similar formulae. Two points are proposed in this paper. One is that the EM of GMM can be regarded as a special EM of HMM. The other is that the EM algorithm of GMM based on symbols is faster in implementation than the EM algorithm of GMM based on samples (or on observation) traditionally. |
---|---|
AbstractList | The HMM (hidden Markov model) is a probabilistic model of the joint probability of a collection of random variables with both observations and states. The GMM (Gaussian mixture model) is a finite mixture probability distribution model. Although the two models have a close relationship, they are always discussed independently and separately. The EM (expectation-maximum) algorithm is a general method to improve the descent algorithm for finding the maximum likelihood estimation. The EM of HMM and the EM of GMM have similar formulae. Two points are proposed in this paper. One is that the EM of GMM can be regarded as a special EM of HMM. The other is that the EM algorithm of GMM based on symbols is faster in implementation than the EM algorithm of GMM based on samples (or on observation) traditionally. |
Author | Guorong Xuan Wei Zhang Peiqi Chai |
Author_xml | – sequence: 1 surname: Guorong Xuan fullname: Guorong Xuan organization: Dept. of Comput. Sci., Tongji Univ., Shanghai, China – sequence: 2 surname: Wei Zhang fullname: Wei Zhang – sequence: 3 surname: Peiqi Chai fullname: Peiqi Chai |
BookMark | eNotj81KxDAYRQMq6PzsxVVeoDVpkiZZiZRxLMygi3E9fGkSJ9o20nRE395CvZsLZ3G4d4Eu-9g7hG4pySkl-r6u6te8IITmWigt-QVaEKkIK2Uh6DVap_RBpnDBJ3SDHjZ7DO17HMJ46hKOHm_hnFKAHnfhZzwPDnfRuhZDb_EpWOt6vIfhM37PfIWuPLTJrf97id6eNofqOdu9bOvqcZcFKsmYMWUYABhmtWZFYUtvDDGlBs6M8cIoyQuvWUOpLa2admtBfeOFboSgSgq2RHezNzjnjl9D6GD4Pc4X2R-e80hC |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2001.958974 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EndPage | 148 vol.1 |
ExternalDocumentID | 958974 |
GroupedDBID | 6IE 6IH 6IK 6IL AAJGR AAVQY AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i170t-38b3aaab3d99322d6fbb0b69a43bbf5b8742f93c11d6d8897951fcf59c5518753 |
IEDL.DBID | RIE |
ISBN | 0780367251 9780780367258 |
IngestDate | Tue Aug 26 17:34:01 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i170t-38b3aaab3d99322d6fbb0b69a43bbf5b8742f93c11d6d8897951fcf59c5518753 |
ParticipantIDs | ieee_primary_958974 |
PublicationCentury | 2000 |
PublicationDate | 20010000 |
PublicationDateYYYYMMDD | 2001-01-01 |
PublicationDate_xml | – year: 2001 text: 20010000 |
PublicationDecade | 2000 |
PublicationTitle | 2001 International Conference on Image Processing |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2001 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000454367 |
Score | 1.8366839 |
Snippet | The HMM (hidden Markov model) is a probabilistic model of the joint probability of a collection of random variables with both observations and states. The GMM... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 145 |
SubjectTerms | Computer science Covariance matrix Electronic mail Gaussian distribution Hidden Markov models Histograms Maximum likelihood estimation Parameter estimation Probability distribution Random variables |
Title | EM algorithms of Gaussian mixture model and hidden Markov model |
URI | https://ieeexplore.ieee.org/document/958974 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJ6ZCKeItD6xJ83TtiaFqaZFAHajUrfL5QStoUrUJQvx6bCctAjEgZXA8WJbt5L7z3fcdQrccEqFZQD0FRHiJBurRJIw8TSE1aESAlk7t84mMpsnDLJ3VOtuOC6OUcslnyrdNF8uXuSjtVVmXpdTA3wZqmFNWUbX21ylWSS4mPeeYU_NX7hm7Xevr7N7pLkoZsO64P55Y5zD0qzF_1FZxpmXYqjjbW6dIaDNKXv2yAF98_tJr_Oesj1Dnm8OHJ3vrdIwOVNZGrV0RB1x_0yfobvCI-dtLvlkWi9UW5xrf83JrqZV4tfyw8QXsquVgnkm8sIIjGbYEn_y96u-g6XDw3B95dVUFbxn2gsKLKcScc4ilgSZRJIkGCIAwnsQAOgVqnGXNYhGGkkhqpm4wmBY6ZcKKtxnv5hQ1szxTZwgnRIacEiYlMbAKJNMRl4qkkqhYBoE6R227HPN1JZwxr1bi4s_eS3RYpXfZ5wo1i02pro29L-DG7fQXRpWnlw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD3pCEeNve_C6sbGttCcPBAQFwgESbqRvbZUom4HNGP96225gNB5Mdth6WJo22_e9vvd9D6FbDmGsmEcdCSR2QgXUoaHfdBSFSLORGJSwbp8j0puGD7NoVvpsWy2MlNIWn0nX3Npcvkjj3ByVNVhENf3dRXsa9sOoEGttD1SMl1xAWjY0p_q_3NLIXTrsbJ7pJk_psUa_3R-b8NB3i7f-6K5iwaVbLVTba-tJaGpKXtw8Azf-_OXY-M95H6L6t4oPj7f4dIR2ZFJD1U0bB1x-1cforjPE_PUpXS2y5-Uapwrf83xtxJV4ufgwGQZs--Vgngj8bCxHEmwkPul7MV5H025n0u45ZV8FZ-G3vMwJKASccwiEJifNpiAKwAPCeBgAqAioDpcVC2LfF0RQPXXNwlSsIhYb-zYd35ygSpIm8hThkAifU8KEIJpYgWCqyYUkkSAyEJ4nz1DNLMf8rbDOmBcrcf7n6A3a702Gg_mgP3q8QAdFsZe5LlElW-XySqN_Btd2178AQquq5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2001+International+Conference+on+Image+Processing&rft.atitle=EM+algorithms+of+Gaussian+mixture+model+and+hidden+Markov+model&rft.au=Guorong+Xuan&rft.au=Wei+Zhang&rft.au=Peiqi+Chai&rft.date=2001-01-01&rft.pub=IEEE&rft.isbn=9780780367258&rft.volume=1&rft.spage=145&rft.epage=148+vol.1&rft_id=info:doi/10.1109%2FICIP.2001.958974&rft.externalDocID=958974 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780367258/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780367258/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780367258/sc.gif&client=summon&freeimage=true |