Ultra Real-Time Portrait Matting via Parallel Semantic Guidance

Most existing portrait matting models either require expensive auxiliary information or try to decompose the task into sub-tasks that are usually resource-hungry. These challenges limit its application on low-power computing devices. In this paper, we propose an ultra-light-weighted portrait matting...

Full description

Saved in:
Bibliographic Details
Published inICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 1 - 5
Main Authors Huang, Xin, Xie, Jiake, Xu, Bo, Huang, Han, Li, Ziwen, Lu, Cheng, Guo, Yandong, Tang, Yong
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most existing portrait matting models either require expensive auxiliary information or try to decompose the task into sub-tasks that are usually resource-hungry. These challenges limit its application on low-power computing devices. In this paper, we propose an ultra-light-weighted portrait matting network via parallel semantic guidance (PSGNet) for real-time portrait matting without any auxiliary inputs. PSGNet leverages parallel multi-level semantic information to efficiently guide the feature representations to replace traditional sequential semantic hints from objective decomposition. We also introduce an efficient fusion module to effectively combine parallel branches of PSGNet to minimize the representation redundancy. Comprehensive experiments demonstrate that our PSGNet can achieve remarkable performance on both synthetic and real-world images. Our PSGNet is capable to process at 100fps thanks to its ultra-small number of parameters, which makes it deployable on low-power computing devices without compromising on the performance of real-time portrait matting.
AbstractList Most existing portrait matting models either require expensive auxiliary information or try to decompose the task into sub-tasks that are usually resource-hungry. These challenges limit its application on low-power computing devices. In this paper, we propose an ultra-light-weighted portrait matting network via parallel semantic guidance (PSGNet) for real-time portrait matting without any auxiliary inputs. PSGNet leverages parallel multi-level semantic information to efficiently guide the feature representations to replace traditional sequential semantic hints from objective decomposition. We also introduce an efficient fusion module to effectively combine parallel branches of PSGNet to minimize the representation redundancy. Comprehensive experiments demonstrate that our PSGNet can achieve remarkable performance on both synthetic and real-world images. Our PSGNet is capable to process at 100fps thanks to its ultra-small number of parameters, which makes it deployable on low-power computing devices without compromising on the performance of real-time portrait matting.
Author Huang, Xin
Xu, Bo
Lu, Cheng
Tang, Yong
Huang, Han
Xie, Jiake
Guo, Yandong
Li, Ziwen
Author_xml – sequence: 1
  givenname: Xin
  surname: Huang
  fullname: Huang, Xin
  organization: University of Maryland, Baltimore County
– sequence: 2
  givenname: Jiake
  surname: Xie
  fullname: Xie, Jiake
  organization: PicUp.Ai
– sequence: 3
  givenname: Bo
  surname: Xu
  fullname: Xu, Bo
  organization: OPPO Research Institute
– sequence: 4
  givenname: Han
  surname: Huang
  fullname: Huang, Han
  organization: OPPO Research Institute
– sequence: 5
  givenname: Ziwen
  surname: Li
  fullname: Li, Ziwen
  organization: OPPO Research Institute
– sequence: 6
  givenname: Cheng
  surname: Lu
  fullname: Lu, Cheng
  organization: XPENG
– sequence: 7
  givenname: Yandong
  surname: Guo
  fullname: Guo, Yandong
  organization: OPPO Research Institute
– sequence: 8
  givenname: Yong
  surname: Tang
  fullname: Tang, Yong
  organization: PicUp.Ai
BookMark eNo1j9FKxDAURKMouF39Ax_iB7TeNEmTPIksugorFrsLvi036a1E2q60VfDvLahPAzOHYSZhJ_2hJ8auBGRCgLt-XN1WVamc1CbLIZeZAHAGpDpiiTC5FYXMjTlmi1walwoHr2csGcd3ALBG2QW72bXTgPyFsE23sSNeHobZiBN_wmmK_Rv_ishLHLBtqeUVddhPMfD1Z6yxD3TOThtsR7r40yXb3d9tVw_p5nk9j9ukURhQaVC68Fp7EZyxJoSABUr00ivEUDvjyVmlfQiFoqIJwmrv5hh8U8sZreWSXf72RiLafwyxw-F7__9W_gD8h00t
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP49357.2023.10097034
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728163277
9781728163277
EISSN 2379-190X
EndPage 5
ExternalDocumentID 10097034
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i1704-c456b55b1c9787ccca6a3ab3b4aacd97be9845bcc64e6fc185b9ab30bfd3a6ad3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:24:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1704-c456b55b1c9787ccca6a3ab3b4aacd97be9845bcc64e6fc185b9ab30bfd3a6ad3
OpenAccessLink https://doi.org/10.1109/icassp49357.2023.10097034
PageCount 5
ParticipantIDs ieee_primary_10097034
PublicationCentury 2000
PublicationDate 2023-June-4
PublicationDateYYYYMMDD 2023-06-04
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June-4
  day: 04
PublicationDecade 2020
PublicationTitle ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
PublicationTitleAbbrev ICASSP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.270924
Snippet Most existing portrait matting models either require expensive auxiliary information or try to decompose the task into sub-tasks that are usually...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Acoustics
Computational modeling
dense prediction
Performance evaluation
portrait matting
real-time matting
Real-time systems
Redundancy
Semantics
Signal processing
Title Ultra Real-Time Portrait Matting via Parallel Semantic Guidance
URI https://ieeexplore.ieee.org/document/10097034
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD64PYi-eJt4J4Kvqas5bZonkeGcgmM4B3sbSXoKxblJ6Xzw15t0Fy8g-BaapAknaU8u5_s-gAsUGSkyCbciSjgqkXGlreAmkYmnZ6FMe6DwYzfuDPBhGA0XYPUKC0NEVfAZBT5Z3eWnUzvzR2XuC28qN0OxBjWp1BystfrtJhKTdThfkGhe3rdu-v2eazySgZcID5aVf8ioVF6kvQXdZfvz4JGXYFaawH78omb8dwe3ofEF2GO9lSvagTWa7MLmN67BPbgejMtCsye3MOQe98F8DGmh85J5yW9XhL3nmvV04cVVxqxPr87muWV3szz1M6MBg_btc6vDF-oJPA9lE7l1SyMTRSa0bqMorRupWAtthEGtbaqkIZVgZKyNkeLMOr9tlMtumiwVrmgq9qE-mU7oAJiUQqSE3owRXoVoYhmTCjHMhFAGs0NoeFuM3uYEGaOlGY7-eH4MG_5dVcQVnkC9LGZ06nx7ac6qMf0E_bmjKg
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7oBC8v3ibejeBr6mrSJnkSGc5NtzHcBnsbSZpCcXZSWh_89SbdxQsIvoVc2nCS9py05_s-gCtKYiOM4liTgGMqSIyF1AQrzrijZzGxdEDhTjdsDunjKBjNweolFsYYUyafGc8Vy3_50VQX7lOZfcJrwu5QugprNrDm4QyutXzxckb5OlzOaTSvW_W7fr9nbx8wz4mEe4vhP4RUSj_S2IbuYgaz9JEXr8iVpz9-kTP-e4o7UP2C7KHe0hntwopJ92DrG9vgPtwOJ3km0bMNDbFDfiCXRZrJJEdO9Nt2Qe-JRD2ZOXmVCeqbV2v1RKOHIonc3qjCsHE_qDfxXD8BJz6rUaxtcKSCQPnaHhWZtmsVSiIVUVRKHQmmjOA0UFqH1ISxtp5bCdtcU3FEbNeIHEAlnabmEBBjhESGOjMG9ManKmShET71Y0KEovERVJ0txm8ziozxwgzHf9RfwEZz0GmP263u0wlsuuuW-Vf0FCp5Vpgz6-lzdV6u7ye3v6Z1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=ICASSP+2023+-+2023+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=Ultra+Real-Time+Portrait+Matting+via+Parallel+Semantic+Guidance&rft.au=Huang%2C+Xin&rft.au=Xie%2C+Jiake&rft.au=Xu%2C+Bo&rft.au=Huang%2C+Han&rft.date=2023-06-04&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICASSP49357.2023.10097034&rft.externalDocID=10097034