Ultra Real-Time Portrait Matting via Parallel Semantic Guidance
Most existing portrait matting models either require expensive auxiliary information or try to decompose the task into sub-tasks that are usually resource-hungry. These challenges limit its application on low-power computing devices. In this paper, we propose an ultra-light-weighted portrait matting...
Saved in:
Published in | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 1 - 5 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
04.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most existing portrait matting models either require expensive auxiliary information or try to decompose the task into sub-tasks that are usually resource-hungry. These challenges limit its application on low-power computing devices. In this paper, we propose an ultra-light-weighted portrait matting network via parallel semantic guidance (PSGNet) for real-time portrait matting without any auxiliary inputs. PSGNet leverages parallel multi-level semantic information to efficiently guide the feature representations to replace traditional sequential semantic hints from objective decomposition. We also introduce an efficient fusion module to effectively combine parallel branches of PSGNet to minimize the representation redundancy. Comprehensive experiments demonstrate that our PSGNet can achieve remarkable performance on both synthetic and real-world images. Our PSGNet is capable to process at 100fps thanks to its ultra-small number of parameters, which makes it deployable on low-power computing devices without compromising on the performance of real-time portrait matting. |
---|---|
AbstractList | Most existing portrait matting models either require expensive auxiliary information or try to decompose the task into sub-tasks that are usually resource-hungry. These challenges limit its application on low-power computing devices. In this paper, we propose an ultra-light-weighted portrait matting network via parallel semantic guidance (PSGNet) for real-time portrait matting without any auxiliary inputs. PSGNet leverages parallel multi-level semantic information to efficiently guide the feature representations to replace traditional sequential semantic hints from objective decomposition. We also introduce an efficient fusion module to effectively combine parallel branches of PSGNet to minimize the representation redundancy. Comprehensive experiments demonstrate that our PSGNet can achieve remarkable performance on both synthetic and real-world images. Our PSGNet is capable to process at 100fps thanks to its ultra-small number of parameters, which makes it deployable on low-power computing devices without compromising on the performance of real-time portrait matting. |
Author | Huang, Xin Xu, Bo Lu, Cheng Tang, Yong Huang, Han Xie, Jiake Guo, Yandong Li, Ziwen |
Author_xml | – sequence: 1 givenname: Xin surname: Huang fullname: Huang, Xin organization: University of Maryland, Baltimore County – sequence: 2 givenname: Jiake surname: Xie fullname: Xie, Jiake organization: PicUp.Ai – sequence: 3 givenname: Bo surname: Xu fullname: Xu, Bo organization: OPPO Research Institute – sequence: 4 givenname: Han surname: Huang fullname: Huang, Han organization: OPPO Research Institute – sequence: 5 givenname: Ziwen surname: Li fullname: Li, Ziwen organization: OPPO Research Institute – sequence: 6 givenname: Cheng surname: Lu fullname: Lu, Cheng organization: XPENG – sequence: 7 givenname: Yandong surname: Guo fullname: Guo, Yandong organization: OPPO Research Institute – sequence: 8 givenname: Yong surname: Tang fullname: Tang, Yong organization: PicUp.Ai |
BookMark | eNo1j9FKxDAURKMouF39Ax_iB7TeNEmTPIksugorFrsLvi036a1E2q60VfDvLahPAzOHYSZhJ_2hJ8auBGRCgLt-XN1WVamc1CbLIZeZAHAGpDpiiTC5FYXMjTlmi1walwoHr2csGcd3ALBG2QW72bXTgPyFsE23sSNeHobZiBN_wmmK_Rv_ishLHLBtqeUVddhPMfD1Z6yxD3TOThtsR7r40yXb3d9tVw_p5nk9j9ukURhQaVC68Fp7EZyxJoSABUr00ivEUDvjyVmlfQiFoqIJwmrv5hh8U8sZreWSXf72RiLafwyxw-F7__9W_gD8h00t |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP49357.2023.10097034 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1728163277 9781728163277 |
EISSN | 2379-190X |
EndPage | 5 |
ExternalDocumentID | 10097034 |
Genre | orig-research |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i1704-c456b55b1c9787ccca6a3ab3b4aacd97be9845bcc64e6fc185b9ab30bfd3a6ad3 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:24:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i1704-c456b55b1c9787ccca6a3ab3b4aacd97be9845bcc64e6fc185b9ab30bfd3a6ad3 |
OpenAccessLink | https://doi.org/10.1109/icassp49357.2023.10097034 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10097034 |
PublicationCentury | 2000 |
PublicationDate | 2023-June-4 |
PublicationDateYYYYMMDD | 2023-06-04 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-June-4 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.270924 |
Snippet | Most existing portrait matting models either require expensive auxiliary information or try to decompose the task into sub-tasks that are usually... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Acoustics Computational modeling dense prediction Performance evaluation portrait matting real-time matting Real-time systems Redundancy Semantics Signal processing |
Title | Ultra Real-Time Portrait Matting via Parallel Semantic Guidance |
URI | https://ieeexplore.ieee.org/document/10097034 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD64PYi-eJt4J4Kvqas5bZonkeGcgmM4B3sbSXoKxblJ6Xzw15t0Fy8g-BaapAknaU8u5_s-gAsUGSkyCbciSjgqkXGlreAmkYmnZ6FMe6DwYzfuDPBhGA0XYPUKC0NEVfAZBT5Z3eWnUzvzR2XuC28qN0OxBjWp1BystfrtJhKTdThfkGhe3rdu-v2eazySgZcID5aVf8ioVF6kvQXdZfvz4JGXYFaawH78omb8dwe3ofEF2GO9lSvagTWa7MLmN67BPbgejMtCsye3MOQe98F8DGmh85J5yW9XhL3nmvV04cVVxqxPr87muWV3szz1M6MBg_btc6vDF-oJPA9lE7l1SyMTRSa0bqMorRupWAtthEGtbaqkIZVgZKyNkeLMOr9tlMtumiwVrmgq9qE-mU7oAJiUQqSE3owRXoVoYhmTCjHMhFAGs0NoeFuM3uYEGaOlGY7-eH4MG_5dVcQVnkC9LGZ06nx7ac6qMf0E_bmjKg |
link.rule.ids | 310,311,783,787,792,793,799,23942,23943,25152,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7oBC8v3ibejeBr6mrSJnkSGc5NtzHcBnsbSZpCcXZSWh_89SbdxQsIvoVc2nCS9py05_s-gCtKYiOM4liTgGMqSIyF1AQrzrijZzGxdEDhTjdsDunjKBjNweolFsYYUyafGc8Vy3_50VQX7lOZfcJrwu5QugprNrDm4QyutXzxckb5OlzOaTSvW_W7fr9nbx8wz4mEe4vhP4RUSj_S2IbuYgaz9JEXr8iVpz9-kTP-e4o7UP2C7KHe0hntwopJ92DrG9vgPtwOJ3km0bMNDbFDfiCXRZrJJEdO9Nt2Qe-JRD2ZOXmVCeqbV2v1RKOHIonc3qjCsHE_qDfxXD8BJz6rUaxtcKSCQPnaHhWZtmsVSiIVUVRKHQmmjOA0UFqH1ISxtp5bCdtcU3FEbNeIHEAlnabmEBBjhESGOjMG9ManKmShET71Y0KEovERVJ0txm8ziozxwgzHf9RfwEZz0GmP263u0wlsuuuW-Vf0FCp5Vpgz6-lzdV6u7ye3v6Z1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=ICASSP+2023+-+2023+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=Ultra+Real-Time+Portrait+Matting+via+Parallel+Semantic+Guidance&rft.au=Huang%2C+Xin&rft.au=Xie%2C+Jiake&rft.au=Xu%2C+Bo&rft.au=Huang%2C+Han&rft.date=2023-06-04&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICASSP49357.2023.10097034&rft.externalDocID=10097034 |