Structured Regularization Using Approximate Morphology for Alzheimer's Disease Classification

Structured regularization allows machine learning models to consider spatial relationships among parameters, leading to results that generalize better and are more interpretable compared to norm penalties. In this study, we evaluated a novel structured regularization method that incorporates approxi...

Full description

Saved in:
Bibliographic Details
Published in2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI) pp. 1 - 4
Main Authors Lin, Disi, Hagg, Linus, Wadbro, Eddie, Berggren, Martin, Lofstedt, Tommy
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.04.2025
SeriesProceedings (International Symposium on Biomedical Imaging)
Subjects
Online AccessGet full text
ISBN9798331520526
9798331520533
ISSN1945-8452
DOI10.1109/ISBI60581.2025.10981098

Cover

Loading…
Abstract Structured regularization allows machine learning models to consider spatial relationships among parameters, leading to results that generalize better and are more interpretable compared to norm penalties. In this study, we evaluated a novel structured regularization method that incorporates approximate morphology operators defined using harmonic mean-based fW-filters. We extended this method to multiclass classification and conducted experiments aimed at classifying magnetic resonance images (MRI) of subjects into four stages of Alzheimer's disease progression. The experimental results demonstrate that the novel structured regularization method not only performs better than standard sparse and structured regularization methods in terms of prediction accuracy (ACC), F1 scores, and the area under the receiver operating characteristic curve (AUC), but also produces interpretable coefficient maps.
AbstractList Structured regularization allows machine learning models to consider spatial relationships among parameters, leading to results that generalize better and are more interpretable compared to norm penalties. In this study, we evaluated a novel structured regularization method that incorporates approximate morphology operators defined using harmonic mean-based fW-filters. We extended this method to multiclass classification and conducted experiments aimed at classifying magnetic resonance images (MRI) of subjects into four stages of Alzheimer's disease progression. The experimental results demonstrate that the novel structured regularization method not only performs better than standard sparse and structured regularization methods in terms of prediction accuracy (ACC), F1 scores, and the area under the receiver operating characteristic curve (AUC), but also produces interpretable coefficient maps.
Structured regularization allows machine learning models to consider spatial relationships among parameters, leading to results that generalize better and are more interpretable compared to norm penalties. In this study, we evaluated a novel structured regularization method that incorporates approximate morphology operators defined using harmonic mean-based fW-filters. We extended this method to multiclass classification and conducted experiments aimed at classifying magnetic resonance images (MRI) of subjects into four stages of Alzheimer’s disease progression. The experimental results demonstrate that the novel structured regularization method not only performs better than standard sparse and structured regularization methods in terms of prediction accuracy (ACC), F1 scores, and the area under the receiver operating characteristic curve (AUC), but also produces interpretable coefficient maps. 
Author Lin, Disi
Berggren, Martin
Wadbro, Eddie
Lofstedt, Tommy
Hagg, Linus
Author_xml – sequence: 1
  givenname: Disi
  surname: Lin
  fullname: Lin, Disi
  organization: Umeå University,Department of Computing Science,Sweden
– sequence: 2
  givenname: Linus
  surname: Hagg
  fullname: Hagg, Linus
  organization: Umeå University,Department of Computing Science,Sweden
– sequence: 3
  givenname: Eddie
  surname: Wadbro
  fullname: Wadbro, Eddie
  organization: Umeå University,Department of Computing Science,Sweden
– sequence: 4
  givenname: Martin
  surname: Berggren
  fullname: Berggren, Martin
  organization: Umeå University,Department of Computing Science,Sweden
– sequence: 5
  givenname: Tommy
  surname: Lofstedt
  fullname: Lofstedt, Tommy
  organization: Umeå University,Department of Computing Science,Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-104832$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-239040$$DView record from Swedish Publication Index
BookMark eNqNkUtLw0AUhccXWGv_geDsXKXOM5lZxtZHoSJY607CJJnE0TQTZhK0_fVGqy5ceeBy4dyPw4VzBPZrW2sATjEaY4zk-WxxMQsRF3hMEOHj3hKfswNGMpKCUswJ4iTcBQMsGQ8E42Tvz-0QjLx_Qb0ixihiA_C0aF2XtZ3TObzXZVcpZzaqNbaGS2_qEsZN4-y7WalWw1vrmmdb2XINC-tgXG2etVlpd-bh1HitvIaTSnlvCpN9ZRyDg0JVXo--9xAsry4fJjfB_O56NonngcGhRIEMozxiIsMpCrkIWaQ40VQRnBdaUVpEecapIGFaMEHSLMpzmgoqUyHzUOBC0iEItrn-TTddmjSuf9itE6tMMjWPcWJdmXSrLiFUIob-x7-qLsGICUp6_mTLG631L_3TAP0AC4R7qA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTPV
BNKNJ
DG3
D93
DOI 10.1109/ISBI60581.2025.10981098
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
SwePub
SwePub Conference
SWEPUB Karlstads universitet
SWEPUB Umeå universitet
DatabaseTitleList


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISBN 9798331520526
EISSN 1945-8452
EndPage 4
ExternalDocumentID oai_DiVA_org_umu_239040
oai_DiVA_org_kau_104832
10981098
Genre orig-research
GrantInformation_xml – fundername: Swedish Research Council
  grantid: 2021-04810
  funderid: 10.13039/501100004359
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ADTPV
BNKNJ
DG3
D93
ID FETCH-LOGICAL-i1690-967d748c1b0658647a52e3a21dfea33f7dc53826bf482bc7dd3b839b89d681f93
IEDL.DBID RIE
ISBN 9798331520526
9798331520533
IngestDate Thu Aug 21 06:43:15 EDT 2025
Thu Aug 21 07:03:57 EDT 2025
Wed Aug 27 01:53:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1690-967d748c1b0658647a52e3a21dfea33f7dc53826bf482bc7dd3b839b89d681f93
PageCount 4
ParticipantIDs swepub_primary_oai_DiVA_org_kau_104832
swepub_primary_oai_DiVA_org_umu_239040
ieee_primary_10981098
PublicationCentury 2000
PublicationDate 2025-April-14
2025
PublicationDateYYYYMMDD 2025-04-14
2025-01-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-14
  day: 14
PublicationDecade 2020
PublicationSeriesTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitle 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI)
PublicationTitleAbbrev ISBI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
ssib060069997
Score 2.2884905
Snippet Structured regularization allows machine learning models to consider spatial relationships among parameters, leading to results that generalize better and are...
SourceID swepub
ieee
SourceType Open Access Repository
Publisher
StartPage 1
SubjectTerms Alzheimer's disease
Alzheimers disease
Classification
Disease classification
Harmonic analysis
Harmonic mean
Interpretation
Machine learning
Machine learning models
Magnetic resonance
Magnetic resonance image
Magnetic resonance imaging
Matematik
Mathematics
Morphology
MRI
Neurodegenerative diseases
Receivers
Regularisation
Regularization methods
Shape
Spatial relationships
Structured regularization
Three-dimensional displays
Title Structured Regularization Using Approximate Morphology for Alzheimer's Disease Classification
URI https://ieeexplore.ieee.org/document/10981098
https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-104832
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-239040
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uT_ri18T5RR5En1rXJE3bx-kcU9gQ52QvUpqPYpnbZK4g--u9pN2UgehDodCkDZf07pfc3e8QOo8AtAutEoekQjpMBdwJKZMOQGfSSDgV1JK4dnu8M2D3Q39YJqvbXBittQ0-0665tb58NZW5OSqDPzwKzVVBFdi5FclaqwMVsIUM9uZlDBc0u7rrX98Zr5_ZBhLfXfYu66iscYNae9LeRr3lSIowkpGbz4UrF2skjf8e6g6qfafu4YeVUdpFG3qyh7Z-sA7uo5e-5YzNZ1rhR1uKflYmY2IbQICbhmf8MwMsq3F3ChNhj94xwFvcfFu86mysZ5cfuFX4drCtq2kijuw7amjQvn266ThllQUnMy4yJ-KBClgoPWHQCGdB4hNNE-KpVCeUpoGSoBQJFykLiZCBUlQAqhJhpHjopRE9QNXJdKIPEWZhg6RUeFQqxRIWJoT7hCcatCLlUqZ1VDOSit8LIo14KaQ6uiimYvXEkF63sudmDEKNR4bw2lDfkz8a5uM8JjQCvXT0y5eO0aZZC8Yd5LETVAV561NAFXNxZlfTFwurzgg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFG4UH9QXbxjx2gejT5uu7brtEUUCCsQIGF7M0tsiQcAgSwy_3rYbaEiMPixZsnZrTrvTr-fyHQDOIw3auZLMQQkXDpEBdUJMhKOhM7pmFHNsSVybLVrrkvue38uT1W0ujFLKBp8p19xaX74ci9SYyvQfHoXmWgVrvsnGzdK1FiYVvRsSfTrPo7h0w6t6-6Zu_H7mIIh8d94_r6SyxA5qd5TqFmjNx5IFkgzcdMpdMVuiafz3YLdB8Tt5Dz4utqUdsKJGu2DzB-_gHnhpW9bYdKIkfLLF6Cd5Oia0IQSwbJjGP_sazSrYHOupsMZ3qAEuLL_NXlV_qCaXH7CSeXegraxpYo7sO4qgW73r3NacvM6C0zdOMieigQxIKDxu8AglAfORwgx5MlEM4ySQQqtFRHlCQsRFICXmGlfxMJI09JII74PCaDxSBwCS8BolmHtYSEkYCRmiPqJMab2IqRBJCRSNpOL3jEojngupBC6yqVg8MbTXlf5zOdZCjQeG8tqQ36M_GqbDNEY40prp8JcvnYH1WqfZiBv11sMR2DDrwjiHPHIMClr26kRjjCk_tSvrC-5C0VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+22nd+International+Symposium+on+Biomedical+Imaging+%28ISBI%29&rft.atitle=Structured+regularization+using+approximate+morphology+for+Alzheimer%27s+disease+classification&rft.au=Lin%2C+Disi&rft.au=H%C3%A4gg%2C+Linus&rft.au=Wadbro%2C+Eddie&rft.au=Berggren%2C+Martin&rft.series=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.date=2025-01-01&rft.isbn=9798331520533&rft.spage=1&rft_id=info:doi/10.1109%2FISBI60581.2025.10981098&rft.externalDocID=oai_DiVA_org_umu_239040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798331520526/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798331520526/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798331520526/sc.gif&client=summon&freeimage=true