Structured Regularization Using Approximate Morphology for Alzheimer's Disease Classification
Structured regularization allows machine learning models to consider spatial relationships among parameters, leading to results that generalize better and are more interpretable compared to norm penalties. In this study, we evaluated a novel structured regularization method that incorporates approxi...
Saved in:
Published in | 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI) pp. 1 - 4 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.04.2025
|
Series | Proceedings (International Symposium on Biomedical Imaging) |
Subjects | |
Online Access | Get full text |
ISBN | 9798331520526 9798331520533 |
ISSN | 1945-8452 |
DOI | 10.1109/ISBI60581.2025.10981098 |
Cover
Loading…
Abstract | Structured regularization allows machine learning models to consider spatial relationships among parameters, leading to results that generalize better and are more interpretable compared to norm penalties. In this study, we evaluated a novel structured regularization method that incorporates approximate morphology operators defined using harmonic mean-based fW-filters. We extended this method to multiclass classification and conducted experiments aimed at classifying magnetic resonance images (MRI) of subjects into four stages of Alzheimer's disease progression. The experimental results demonstrate that the novel structured regularization method not only performs better than standard sparse and structured regularization methods in terms of prediction accuracy (ACC), F1 scores, and the area under the receiver operating characteristic curve (AUC), but also produces interpretable coefficient maps. |
---|---|
AbstractList | Structured regularization allows machine learning models to consider spatial relationships among parameters, leading to results that generalize better and are more interpretable compared to norm penalties. In this study, we evaluated a novel structured regularization method that incorporates approximate morphology operators defined using harmonic mean-based fW-filters. We extended this method to multiclass classification and conducted experiments aimed at classifying magnetic resonance images (MRI) of subjects into four stages of Alzheimer's disease progression. The experimental results demonstrate that the novel structured regularization method not only performs better than standard sparse and structured regularization methods in terms of prediction accuracy (ACC), F1 scores, and the area under the receiver operating characteristic curve (AUC), but also produces interpretable coefficient maps. Structured regularization allows machine learning models to consider spatial relationships among parameters, leading to results that generalize better and are more interpretable compared to norm penalties. In this study, we evaluated a novel structured regularization method that incorporates approximate morphology operators defined using harmonic mean-based fW-filters. We extended this method to multiclass classification and conducted experiments aimed at classifying magnetic resonance images (MRI) of subjects into four stages of Alzheimer’s disease progression. The experimental results demonstrate that the novel structured regularization method not only performs better than standard sparse and structured regularization methods in terms of prediction accuracy (ACC), F1 scores, and the area under the receiver operating characteristic curve (AUC), but also produces interpretable coefficient maps. |
Author | Lin, Disi Berggren, Martin Wadbro, Eddie Lofstedt, Tommy Hagg, Linus |
Author_xml | – sequence: 1 givenname: Disi surname: Lin fullname: Lin, Disi organization: Umeå University,Department of Computing Science,Sweden – sequence: 2 givenname: Linus surname: Hagg fullname: Hagg, Linus organization: Umeå University,Department of Computing Science,Sweden – sequence: 3 givenname: Eddie surname: Wadbro fullname: Wadbro, Eddie organization: Umeå University,Department of Computing Science,Sweden – sequence: 4 givenname: Martin surname: Berggren fullname: Berggren, Martin organization: Umeå University,Department of Computing Science,Sweden – sequence: 5 givenname: Tommy surname: Lofstedt fullname: Lofstedt, Tommy organization: Umeå University,Department of Computing Science,Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-104832$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-239040$$DView record from Swedish Publication Index |
BookMark | eNqNkUtLw0AUhccXWGv_geDsXKXOM5lZxtZHoSJY607CJJnE0TQTZhK0_fVGqy5ceeBy4dyPw4VzBPZrW2sATjEaY4zk-WxxMQsRF3hMEOHj3hKfswNGMpKCUswJ4iTcBQMsGQ8E42Tvz-0QjLx_Qb0ixihiA_C0aF2XtZ3TObzXZVcpZzaqNbaGS2_qEsZN4-y7WalWw1vrmmdb2XINC-tgXG2etVlpd-bh1HitvIaTSnlvCpN9ZRyDg0JVXo--9xAsry4fJjfB_O56NonngcGhRIEMozxiIsMpCrkIWaQ40VQRnBdaUVpEecapIGFaMEHSLMpzmgoqUyHzUOBC0iEItrn-TTddmjSuf9itE6tMMjWPcWJdmXSrLiFUIob-x7-qLsGICUp6_mTLG631L_3TAP0AC4R7qA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL ADTPV BNKNJ DG3 D93 |
DOI | 10.1109/ISBI60581.2025.10981098 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present SwePub SwePub Conference SWEPUB Karlstads universitet SWEPUB Umeå universitet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISBN | 9798331520526 |
EISSN | 1945-8452 |
EndPage | 4 |
ExternalDocumentID | oai_DiVA_org_umu_239040 oai_DiVA_org_kau_104832 10981098 |
Genre | orig-research |
GrantInformation_xml | – fundername: Swedish Research Council grantid: 2021-04810 funderid: 10.13039/501100004359 |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS ADTPV BNKNJ DG3 D93 |
ID | FETCH-LOGICAL-i1690-967d748c1b0658647a52e3a21dfea33f7dc53826bf482bc7dd3b839b89d681f93 |
IEDL.DBID | RIE |
ISBN | 9798331520526 9798331520533 |
IngestDate | Thu Aug 21 06:43:15 EDT 2025 Thu Aug 21 07:03:57 EDT 2025 Wed Aug 27 01:53:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i1690-967d748c1b0658647a52e3a21dfea33f7dc53826bf482bc7dd3b839b89d681f93 |
PageCount | 4 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kau_104832 swepub_primary_oai_DiVA_org_umu_239040 ieee_primary_10981098 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-14 2025 |
PublicationDateYYYYMMDD | 2025-04-14 2025-01-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-14 day: 14 |
PublicationDecade | 2020 |
PublicationSeriesTitle | Proceedings (International Symposium on Biomedical Imaging) |
PublicationTitle | 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI) |
PublicationTitleAbbrev | ISBI |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 ssib060069997 |
Score | 2.2884905 |
Snippet | Structured regularization allows machine learning models to consider spatial relationships among parameters, leading to results that generalize better and are... |
SourceID | swepub ieee |
SourceType | Open Access Repository Publisher |
StartPage | 1 |
SubjectTerms | Alzheimer's disease Alzheimers disease Classification Disease classification Harmonic analysis Harmonic mean Interpretation Machine learning Machine learning models Magnetic resonance Magnetic resonance image Magnetic resonance imaging Matematik Mathematics Morphology MRI Neurodegenerative diseases Receivers Regularisation Regularization methods Shape Spatial relationships Structured regularization Three-dimensional displays |
Title | Structured Regularization Using Approximate Morphology for Alzheimer's Disease Classification |
URI | https://ieeexplore.ieee.org/document/10981098 https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-104832 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-239040 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uT_ri18T5RR5En1rXJE3bx-kcU9gQ52QvUpqPYpnbZK4g--u9pN2UgehDodCkDZf07pfc3e8QOo8AtAutEoekQjpMBdwJKZMOQGfSSDgV1JK4dnu8M2D3Q39YJqvbXBittQ0-0665tb58NZW5OSqDPzwKzVVBFdi5FclaqwMVsIUM9uZlDBc0u7rrX98Zr5_ZBhLfXfYu66iscYNae9LeRr3lSIowkpGbz4UrF2skjf8e6g6qfafu4YeVUdpFG3qyh7Z-sA7uo5e-5YzNZ1rhR1uKflYmY2IbQICbhmf8MwMsq3F3ChNhj94xwFvcfFu86mysZ5cfuFX4drCtq2kijuw7amjQvn266ThllQUnMy4yJ-KBClgoPWHQCGdB4hNNE-KpVCeUpoGSoBQJFykLiZCBUlQAqhJhpHjopRE9QNXJdKIPEWZhg6RUeFQqxRIWJoT7hCcatCLlUqZ1VDOSit8LIo14KaQ6uiimYvXEkF63sudmDEKNR4bw2lDfkz8a5uM8JjQCvXT0y5eO0aZZC8Yd5LETVAV561NAFXNxZlfTFwurzgg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFG4UH9QXbxjx2gejT5uu7brtEUUCCsQIGF7M0tsiQcAgSwy_3rYbaEiMPixZsnZrTrvTr-fyHQDOIw3auZLMQQkXDpEBdUJMhKOhM7pmFHNsSVybLVrrkvue38uT1W0ujFLKBp8p19xaX74ci9SYyvQfHoXmWgVrvsnGzdK1FiYVvRsSfTrPo7h0w6t6-6Zu_H7mIIh8d94_r6SyxA5qd5TqFmjNx5IFkgzcdMpdMVuiafz3YLdB8Tt5Dz4utqUdsKJGu2DzB-_gHnhpW9bYdKIkfLLF6Cd5Oia0IQSwbJjGP_sazSrYHOupsMZ3qAEuLL_NXlV_qCaXH7CSeXegraxpYo7sO4qgW73r3NacvM6C0zdOMieigQxIKDxu8AglAfORwgx5MlEM4ySQQqtFRHlCQsRFICXmGlfxMJI09JII74PCaDxSBwCS8BolmHtYSEkYCRmiPqJMab2IqRBJCRSNpOL3jEojngupBC6yqVg8MbTXlf5zOdZCjQeG8tqQ36M_GqbDNEY40prp8JcvnYH1WqfZiBv11sMR2DDrwjiHPHIMClr26kRjjCk_tSvrC-5C0VA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+22nd+International+Symposium+on+Biomedical+Imaging+%28ISBI%29&rft.atitle=Structured+regularization+using+approximate+morphology+for+Alzheimer%27s+disease+classification&rft.au=Lin%2C+Disi&rft.au=H%C3%A4gg%2C+Linus&rft.au=Wadbro%2C+Eddie&rft.au=Berggren%2C+Martin&rft.series=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.date=2025-01-01&rft.isbn=9798331520533&rft.spage=1&rft_id=info:doi/10.1109%2FISBI60581.2025.10981098&rft.externalDocID=oai_DiVA_org_umu_239040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798331520526/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798331520526/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798331520526/sc.gif&client=summon&freeimage=true |