Resolution-robust Large Mask Inpainting with Fourier Convolutions

Modern image inpainting systems, despite the significant progress, often struggle with large missing areas, complex geometric structures, and high-resolution images. We find that one of the main reasons for that is the lack of an effective receptive field in both the inpainting network and the loss...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE Workshop on Applications of Computer Vision pp. 3172 - 3182
Main Authors Suvorov, Roman, Logacheva, Elizaveta, Mashikhin, Anton, Remizova, Anastasia, Ashukha, Arsenii, Silvestrov, Aleksei, Kong, Naejin, Goka, Harshith, Park, Kiwoong, Lempitsky, Victor
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2022
Subjects
Online AccessGet full text
ISSN2642-9381
DOI10.1109/WACV51458.2022.00323

Cover

Loading…
Abstract Modern image inpainting systems, despite the significant progress, often struggle with large missing areas, complex geometric structures, and high-resolution images. We find that one of the main reasons for that is the lack of an effective receptive field in both the inpainting network and the loss function. To alleviate this issue, we propose a new method called large mask inpainting (LaMa). LaMa is based on i) a new inpainting network architecture that uses fast Fourier convolutions (FFCs), which have the image-wide receptive field; ii) a high receptive field perceptual loss; iii) large training masks, which unlocks the potential of the first two components. Our inpainting network improves the state-of-the-art across a range of datasets and achieves excellent performance even in challenging scenarios, e.g. completion of periodic structures. Our model generalizes surprisingly well to resolutions that are higher than those seen at train time, and achieves this at lower parameter&time costs than the competitive baselines. The code is available at https://github.com/saic-mdal/lama.
AbstractList Modern image inpainting systems, despite the significant progress, often struggle with large missing areas, complex geometric structures, and high-resolution images. We find that one of the main reasons for that is the lack of an effective receptive field in both the inpainting network and the loss function. To alleviate this issue, we propose a new method called large mask inpainting (LaMa). LaMa is based on i) a new inpainting network architecture that uses fast Fourier convolutions (FFCs), which have the image-wide receptive field; ii) a high receptive field perceptual loss; iii) large training masks, which unlocks the potential of the first two components. Our inpainting network improves the state-of-the-art across a range of datasets and achieves excellent performance even in challenging scenarios, e.g. completion of periodic structures. Our model generalizes surprisingly well to resolutions that are higher than those seen at train time, and achieves this at lower parameter&time costs than the competitive baselines. The code is available at https://github.com/saic-mdal/lama.
Author Mashikhin, Anton
Park, Kiwoong
Lempitsky, Victor
Logacheva, Elizaveta
Goka, Harshith
Kong, Naejin
Silvestrov, Aleksei
Suvorov, Roman
Remizova, Anastasia
Ashukha, Arsenii
Author_xml – sequence: 1
  givenname: Roman
  surname: Suvorov
  fullname: Suvorov, Roman
  organization: Samsung AI Center Moscow
– sequence: 2
  givenname: Elizaveta
  surname: Logacheva
  fullname: Logacheva, Elizaveta
  organization: Samsung AI Center Moscow
– sequence: 3
  givenname: Anton
  surname: Mashikhin
  fullname: Mashikhin, Anton
  organization: Samsung AI Center Moscow
– sequence: 4
  givenname: Anastasia
  surname: Remizova
  fullname: Remizova, Anastasia
  email: windj007@gmail.com
  organization: Swiss Federal Institute of Technology Lausanne (EPFL)
– sequence: 5
  givenname: Arsenii
  surname: Ashukha
  fullname: Ashukha, Arsenii
  organization: Samsung AI Center Moscow
– sequence: 6
  givenname: Aleksei
  surname: Silvestrov
  fullname: Silvestrov, Aleksei
  organization: Samsung AI Center Moscow
– sequence: 7
  givenname: Naejin
  surname: Kong
  fullname: Kong, Naejin
  organization: Samsung Research
– sequence: 8
  givenname: Harshith
  surname: Goka
  fullname: Goka, Harshith
  organization: Samsung Research
– sequence: 9
  givenname: Kiwoong
  surname: Park
  fullname: Park, Kiwoong
  organization: Samsung Research
– sequence: 10
  givenname: Victor
  surname: Lempitsky
  fullname: Lempitsky, Victor
  organization: Samsung AI Center Moscow
BookMark eNotjF1LwzAYRqMouE5_gV70D7TmTdI0uSzFzcFEED8uR9q-mdGZjKRV_PcOHM_FuTnnyciZDx4JuQFaAlB9-9a0rxWISpWMMlZSyhk_IRlIWQmqoaKnZMakYIXmCi5IltLHwdGg-Yw0T5jCbhpd8EUM3ZTGfG3iFvMHkz7zld8b50fnt_mPG9_zRZiiw5i3wX8fq3RJzq3ZJbw6ck5eFnfP7X2xflyu2mZdOJCCF9bSSoPgqCyVQkvWdVoq3avOSibrYRjQ6J4bEDWaAaVGY6DrRS17K02v-Jxc__86RNzso_sy8Xeja3pYzf8Ac6FM6A
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WACV51458.2022.00323
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665409150
9781665409155
EISSN 2642-9381
EndPage 3182
ExternalDocumentID 9707077
Genre orig-research
GroupedDBID 29G
29O
6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i1643-ff059143e8f064962bb9689c8bf6267dddea9c3a147eade69eaa1bc476cf6ac83
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1643-ff059143e8f064962bb9689c8bf6267dddea9c3a147eade69eaa1bc476cf6ac83
OpenAccessLink http://infoscience.epfl.ch/record/295309
PageCount 11
ParticipantIDs ieee_primary_9707077
PublicationCentury 2000
PublicationDate 2022-Jan.
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationTitle Proceedings / IEEE Workshop on Applications of Computer Vision
PublicationTitleAbbrev WACV
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039193
Score 2.665728
Snippet Modern image inpainting systems, despite the significant progress, often struggle with large missing areas, complex geometric structures, and high-resolution...
SourceID ieee
SourceType Publisher
StartPage 3172
SubjectTerms Computational modeling
Computer vision
Convolutional codes
Costs
Deep Learning -> Neural Generative Models; Autoencoders; GANs Semantic Image Manipulation
Network architecture
Periodic structures
Training
Title Resolution-robust Large Mask Inpainting with Fourier Convolutions
URI https://ieeexplore.ieee.org/document/9707077
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT8IwFH4BTp5Qwaio6cGjA0a7dj0SIkEjxoMoN9J2bUJIBoHNg7_e122gMR68LT2sS9u9932v73sP4NY6xuNIJEEiDRKUUKAdFMwFTlqH3M1qQb3AefrMJzP2OI_mNbg7aGGstUXyme36x-IuP1mb3IfKelL44jSiDnUkbqVWa291qUQkUknjwr7svQ9Hb4gFIp-9NfA1OalvSPSjgUrhP8ZNmO5nLtNGVt08013z-aso438_7Rja30o98nLwQSdQs-kpNCtoSaofd9eCoQ_Tl4cs2K51vsvIk88BJ1O1W5GHdKOWRcsI4uOyZFw2siM4ycf-aLZhNr5_HU2CqntCsEQKRAPnEDkhGrKxQ9gh-UBryWNpYu2QxIgE7ZqShqqQCZ80zaVVKtSGCW4cVyamZ9BI16k9B0INjyLnbJ85gy9EksQTapjjaC5iLvUFtPyKLDZlgYxFtRiXfw934MjvSRnHuIJGts3tNXr2TN8UW_oFejSlVQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGjA0a3dj0SIgFlxAMoN7J2bUJIBoHNg3-9r9tAYzx4W3pYl7Z773uv3_cewIM2Hgt8HjuxUBiguBztIPeMY4Q2GLtpyakVOIdjNph6zzN_VoHHvRZGa52Tz3TTPuZ3-fFKZTZV1hLcFqfhB3DoWzFuodba2V0qEIuU4ji3LVrv3d4bogHf8rc6tiontS2JfrRQyT1Ivwbhbu6COLJsZqlsqs9fZRn_-3En0PjW6pHXvRc6hYpOzqBWgktS_rrbOnRtor44Zs5mJbNtSkaWBU7CaLskw2QdLfKmEcRmZkm_aGVHcJKP3eFswLT_NOkNnLJ_grPAIIg6xiB2QjykA4PAQ7COlIIFQgXSYBjDY7RskVA0cj1uadNM6ChypfI4U4ZFKqDnUE1Wib4AQhXzfWN02zMKX4hhEoup8gxDgxEwIS-hbldkvi5KZMzLxbj6e_gejgaTcDQfDccv13Bs96fIatxANd1k-hb9fCrv8u39AkjSqJ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+Workshop+on+Applications+of+Computer+Vision&rft.atitle=Resolution-robust+Large+Mask+Inpainting+with+Fourier+Convolutions&rft.au=Suvorov%2C+Roman&rft.au=Logacheva%2C+Elizaveta&rft.au=Mashikhin%2C+Anton&rft.au=Remizova%2C+Anastasia&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=2642-9381&rft.spage=3172&rft.epage=3182&rft_id=info:doi/10.1109%2FWACV51458.2022.00323&rft.externalDocID=9707077