Quantitative 1H-magnetic resonance spectroscopy of human brain: Influence of composition and parameterization of the basis set in linear combination model-fitting
Localized short‐echo‐time 1H‐MR spectra of human brain contain contributions of many low‐molecular‐weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeli...
Saved in:
Published in | Magnetic resonance in medicine Vol. 48; no. 3; pp. 440 - 453 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Wiley Subscription Services, Inc., A Wiley Company
01.09.2002
Williams & Wilkins |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 |
DOI | 10.1002/mrm.10246 |
Cover
Abstract | Localized short‐echo‐time 1H‐MR spectra of human brain contain contributions of many low‐molecular‐weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information. Magn Reson Med 48:440–453, 2002. © 2002 Wiley‐Liss, Inc. |
---|---|
AbstractList | Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information. Localized short‐echo‐time 1H‐MR spectra of human brain contain contributions of many low‐molecular‐weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information. Magn Reson Med 48:440–453, 2002. © 2002 Wiley‐Liss, Inc. Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information. |
Author | Jung, B. Slotboom, J. Boesch, C. Hofmann, L. Maloca, P. Kreis, R. |
Author_xml | – sequence: 1 givenname: L. surname: Hofmann fullname: Hofmann, L. organization: Department of Clinical Research, Unit for MR Spectroscopy & Methodology, University Berne, Switzerland – sequence: 2 givenname: J. surname: Slotboom fullname: Slotboom, J. organization: Department of Clinical Research, Unit for MR Spectroscopy & Methodology, University Berne, Switzerland – sequence: 3 givenname: B. surname: Jung fullname: Jung, B. organization: Department of Clinical Research, Unit for MR Spectroscopy & Methodology, University Berne, Switzerland – sequence: 4 givenname: P. surname: Maloca fullname: Maloca, P. organization: Department of Clinical Research, Unit for MR Spectroscopy & Methodology, University Berne, Switzerland – sequence: 5 givenname: C. surname: Boesch fullname: Boesch, C. organization: Department of Clinical Research, Unit for MR Spectroscopy & Methodology, University Berne, Switzerland – sequence: 6 givenname: R. surname: Kreis fullname: Kreis, R. email: roland.kreis@insel.ch organization: Department of Clinical Research, Unit for MR Spectroscopy & Methodology, University Berne, Switzerland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13880574$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12210908$$D View this record in MEDLINE/PubMed |
BookMark | eNpF0ctu1TAQBmALFdHTwoIXQN7ALq3tOHHMDlXQU9SLSrksrUkyaQ2JndoOcPo4PCk5F-jKI8_3z2LmgOw575CQl5wdccbE8RCGuRCyfEIWvBAiE4WWe2TBlGRZzrXcJwcxfmeMaa3kM7LPheBMs2pB_lxP4JJNkOxPpHyZDXDrMNmGBozegWuQxhGbFHxs_LiivqN30wCO1gGse0vPXNdPuGZzp_HD6KNN1jsKrqUjBBgwYbAPsPmcTbpDWkO0kUZM1DraW4cQ1tnaui0bfIt91tmUrLt9Tp520Ed8sXsPyZcP7z-fLLPzq9Ozk3fnmeWlKLNOaFVpqTqQvGSdYlgj1FpUqFFyLjhiBbzS0JayUqID4IWUbasKxfNONfkhebOdOwZ_P2FMZrCxwb4Hh36KRglWlLoqZvhqB6d6wNaMwQ4QVubfVmfwegcgNtB3YV6jjY8urypWKDm74637ZXtcPfaZWZ_VzGc1m7Oai08Xm2JOZNuEjQl__09A-GFKlavCfLs8NV_zj5c3y5vclPlf_CSotg |
CODEN | MRMEEN |
ContentType | Journal Article |
Copyright | Copyright © 2002 Wiley‐Liss, Inc. 2002 INIST-CNRS Copyright 2002 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2002 Wiley‐Liss, Inc. – notice: 2002 INIST-CNRS – notice: Copyright 2002 Wiley-Liss, Inc. |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/mrm.10246 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 453 |
ExternalDocumentID | 12210908 13880574 MRM10246 ark_67375_WNG_V3JNSHS3_6 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Swiss National Foundation funderid: 31‐43280.95; 31‐59082.99 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-i1626-f2978947fa4160f70ebeab928e9e41121ee8a189ad64872faa1544dd75713f7c3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 |
IngestDate | Fri Jul 11 00:20:23 EDT 2025 Wed Feb 19 01:24:45 EST 2025 Mon Jul 21 09:12:05 EDT 2025 Tue Sep 09 05:11:40 EDT 2025 Wed Oct 30 09:57:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Human Spectrometry Macromolecule Metabolite Reproducibility Medical imagery Parameterization Nuclear magnetic resonance imaging Quantitative analysis Brain (vertebrata) |
Language | English |
License | CC BY 4.0 Copyright 2002 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i1626-f2978947fa4160f70ebeab928e9e41121ee8a189ad64872faa1544dd75713f7c3 |
Notes | istex:CD59AB63D94614502D55808DDC59E4AB56CC8960 ark:/67375/WNG-V3JNSHS3-6 ArticleID:MRM10246 Swiss National Foundation - No. 31-43280.95; No. 31-59082.99 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 12210908 |
PQID | 72056985 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_72056985 pubmed_primary_12210908 pascalfrancis_primary_13880574 wiley_primary_10_1002_mrm_10246_MRM10246 istex_primary_ark_67375_WNG_V3JNSHS3_6 |
PublicationCentury | 2000 |
PublicationDate | September 2002 |
PublicationDateYYYYMMDD | 2002-09-01 |
PublicationDate_xml | – month: 09 year: 2002 text: September 2002 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Baltimore, MD – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2002 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Williams & Wilkins |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Williams & Wilkins |
References | Soher BJ, Hurd RE, Sailasuta N, Barker PB. Quantitation of automated single-voxel proton MRS using cerebral water as an internal reference. Magn Reson Med 1996; 36: 335-339. Mierisova S, van den Boogaart A, Tkac I, Van Hecke P, Vanhamme L, Liptaj T. New approach for quantitation of short echo time in vivo 1H MR spectra of brain using AMARES. NMR Biomed 1998; 11: 32-39. Banay-Schwartz M, Lajtha A, Palkovits M. Regional distribution of glutamate and aspartate in adult and old human brain. Brain Res 1992; 594: 343-346. Moonen CTW, van Zijl PCM. Highly effective water suppression for in vivo proton NMR spectroscopy (DRYSTEAM). J Magn Reson 1990; 88: 28-41. Provencher SW. Estimation of metabolite concentration from localized in vivo proton NMR spectra. Magn Reson Med 1993; 30: 672-679. Hennig J. The application of phase rotation for localized in vivo proton spectroscopy with short echo times. J Magn Reson 1992; 96: 40-49. Ernst T, Hennig J. Improved water suppression for localized in vivo 1H spectroscopy. J Magn Reson Series B 1995; 106: 181-186. Soher BJ, Young K, Govindaraju V, Maudsley AA. Automated spectral analysis. III. Application to in vivo proton MR spectroscopy and spectroscopic imaging. Magn Reson Med 1998; 40: 822-831. Ernst T, Kreis R, Ross BD. Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson Series B 1993; 102: 1-8. Vanhamme L, van den Boogaart A, van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997; 129: 35-43. Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM. Discrimination of metabolite from lipid and macromolecule resonances in cerebral infarction in humans using short echo proton spectroscopy. J Magn Reson Imag 1997; 7: 1116-1121. Kreis R. Quantitative localized 1H-MR spectroscopy for clinical use. Prog NMR Spectrosc 1997; 31: 155-195. Soher BJ, Young K, Maudsley AA. Representation of strong baseline contributions in 1H MR spectra. Magn Reson Med 2001; 45: 966-972. Cady EB, D'Souza PC. Analysis of proton brain spectra from human infants by fitting linear combinations of model spectra. J Magn Reson Anal 1997; 3: 5-14. Slotboom J, Boesch C, Kreis R. Versatile frequency domain fitting using time domain models and prior knowledge. Magn Reson Med 1998; 39: 899-911. Young K, Soher BJ, Maudsley AA. Automated spectral analysis. II. Application of wavelet shrinkage for characterization of non-parameterized signals. Magn Reson Med 1998; 40: 816-821. Bartha R, Drost DJ, Williamson PC. Factors affecting the quantification of short echo in-vivo 1H MR spectra: prior knowledge, peak elimination, and filtering. NMR Biomed 1999; 12: 205-216. Hakumaki JM, Kauppinen RA. 1H NMR visible lipids in the life and death of cells. Trends Biochem Sci 2000; 25: 357-362. Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, Frahm J. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 1999; 46: 474-485. Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 2000; 13: 129-153. Hofmann L, Slotboom J, Boesch C, Kreis R. Characterization of the macromolecule baseline in localized 1H-MR spectra of human brain. Magn Reson Med 2001; 46: 855-863. de Graaf AA, Bovee WMMJ. Improved quantification of in vivo 1H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into the spectral fitting. Magn Reson Med 1990; 15: 305-319. Young K, Govindaraju V, Soher BJ, Maudsley AA. Automated spectral analysis. I. Formation of a priori information by spectral simulation. Magn Reson Med 1998; 40: 812-815. van der Veen JW, de Beer R, Luyten PR, van Ormondt D. Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn Reson Med 1988; 6: 92-98. Mader I, Seeger U, Weissert R, Klose U, Naegele T, Melms A, Grodd W. Proton MR spectroscopy with metabolite-nulling reveals elevated macromolecules in acute multiple sclerosis. Brain 2001; 124: 953-961. Kreis R, Ross BD. Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy. Radiology 1992; 184: 123-130. Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J Magn Reson 1999; 141: 104-120. Ala-Korpela M, Korhonen A, Liinamaa MJ, Savolainen MJ, Jokisaari J, Kesäniemi YA. 1H NMR and prior knowledge based lineshape fitting analysis: a powerful combination for quantitative biochemistry of plasma and lipoproteins. J Magn Reson Anal 1997; 3: 15-20. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D. Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 2001; 14: 278-283. Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DKB, Paty DW. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34-47. 2001; 124 1992; 184 1990; 15 2000; 25 1998 1999; 46 1999; 141 1996; 36 2001; 45 1998; 40 1993; 102 1997; 3 2001; 46 1997; 7 1999 1992; 96 1998; 39 1990; 88 1997; 129 2000 1997; 31 1992; 594 2000; 13 1988; 6 1997; 37 1993; 30 1995; 106 1999; 12 1984 2001; 14 1998; 11 |
References_xml | – reference: Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, Frahm J. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 1999; 46: 474-485. – reference: van der Veen JW, de Beer R, Luyten PR, van Ormondt D. Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn Reson Med 1988; 6: 92-98. – reference: de Graaf AA, Bovee WMMJ. Improved quantification of in vivo 1H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into the spectral fitting. Magn Reson Med 1990; 15: 305-319. – reference: Kreis R. Quantitative localized 1H-MR spectroscopy for clinical use. Prog NMR Spectrosc 1997; 31: 155-195. – reference: Mierisova S, van den Boogaart A, Tkac I, Van Hecke P, Vanhamme L, Liptaj T. New approach for quantitation of short echo time in vivo 1H MR spectra of brain using AMARES. NMR Biomed 1998; 11: 32-39. – reference: Cady EB, D'Souza PC. Analysis of proton brain spectra from human infants by fitting linear combinations of model spectra. J Magn Reson Anal 1997; 3: 5-14. – reference: Kreis R, Ross BD. Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy. Radiology 1992; 184: 123-130. – reference: Hennig J. The application of phase rotation for localized in vivo proton spectroscopy with short echo times. J Magn Reson 1992; 96: 40-49. – reference: Hofmann L, Slotboom J, Boesch C, Kreis R. Characterization of the macromolecule baseline in localized 1H-MR spectra of human brain. Magn Reson Med 2001; 46: 855-863. – reference: Mader I, Seeger U, Weissert R, Klose U, Naegele T, Melms A, Grodd W. Proton MR spectroscopy with metabolite-nulling reveals elevated macromolecules in acute multiple sclerosis. Brain 2001; 124: 953-961. – reference: Ernst T, Hennig J. Improved water suppression for localized in vivo 1H spectroscopy. J Magn Reson Series B 1995; 106: 181-186. – reference: Provencher SW. Estimation of metabolite concentration from localized in vivo proton NMR spectra. Magn Reson Med 1993; 30: 672-679. – reference: Vanhamme L, van den Boogaart A, van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997; 129: 35-43. – reference: Bartha R, Drost DJ, Williamson PC. Factors affecting the quantification of short echo in-vivo 1H MR spectra: prior knowledge, peak elimination, and filtering. NMR Biomed 1999; 12: 205-216. – reference: Soher BJ, Young K, Govindaraju V, Maudsley AA. Automated spectral analysis. III. Application to in vivo proton MR spectroscopy and spectroscopic imaging. Magn Reson Med 1998; 40: 822-831. – reference: Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D. Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 2001; 14: 278-283. – reference: Young K, Govindaraju V, Soher BJ, Maudsley AA. Automated spectral analysis. I. Formation of a priori information by spectral simulation. Magn Reson Med 1998; 40: 812-815. – reference: Soher BJ, Young K, Maudsley AA. Representation of strong baseline contributions in 1H MR spectra. Magn Reson Med 2001; 45: 966-972. – reference: Soher BJ, Hurd RE, Sailasuta N, Barker PB. Quantitation of automated single-voxel proton MRS using cerebral water as an internal reference. Magn Reson Med 1996; 36: 335-339. – reference: Banay-Schwartz M, Lajtha A, Palkovits M. Regional distribution of glutamate and aspartate in adult and old human brain. Brain Res 1992; 594: 343-346. – reference: Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM. Discrimination of metabolite from lipid and macromolecule resonances in cerebral infarction in humans using short echo proton spectroscopy. J Magn Reson Imag 1997; 7: 1116-1121. – reference: Slotboom J, Boesch C, Kreis R. Versatile frequency domain fitting using time domain models and prior knowledge. Magn Reson Med 1998; 39: 899-911. – reference: Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 2000; 13: 129-153. – reference: Moonen CTW, van Zijl PCM. Highly effective water suppression for in vivo proton NMR spectroscopy (DRYSTEAM). J Magn Reson 1990; 88: 28-41. – reference: Ernst T, Kreis R, Ross BD. Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson Series B 1993; 102: 1-8. – reference: Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J Magn Reson 1999; 141: 104-120. – reference: Young K, Soher BJ, Maudsley AA. Automated spectral analysis. II. Application of wavelet shrinkage for characterization of non-parameterized signals. Magn Reson Med 1998; 40: 816-821. – reference: Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DKB, Paty DW. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34-47. – reference: Ala-Korpela M, Korhonen A, Liinamaa MJ, Savolainen MJ, Jokisaari J, Kesäniemi YA. 1H NMR and prior knowledge based lineshape fitting analysis: a powerful combination for quantitative biochemistry of plasma and lipoproteins. J Magn Reson Anal 1997; 3: 15-20. – reference: Hakumaki JM, Kauppinen RA. 1H NMR visible lipids in the life and death of cells. Trends Biochem Sci 2000; 25: 357-362. – volume: 36 start-page: 335 year: 1996 end-page: 339 article-title: Quantitation of automated single‐voxel proton MRS using cerebral water as an internal reference publication-title: Magn Reson Med – volume: 96 start-page: 40 year: 1992 end-page: 49 article-title: The application of phase rotation for localized in vivo proton spectroscopy with short echo times publication-title: J Magn Reson – volume: 12 start-page: 205 year: 1999 end-page: 216 article-title: Factors affecting the quantification of short echo in‐vivo 1H MR spectra: prior knowledge, peak elimination, and filtering publication-title: NMR Biomed – volume: 7 start-page: 1116 year: 1997 end-page: 1121 article-title: Discrimination of metabolite from lipid and macromolecule resonances in cerebral infarction in humans using short echo proton spectroscopy publication-title: J Magn Reson Imag – volume: 141 start-page: 104 year: 1999 end-page: 120 article-title: Toward an in vivo neurochemical profile: quantification of 18 metabolites in short‐echo‐time (1)H NMR spectra of the rat brain publication-title: J Magn Reson – volume: 25 start-page: 357 year: 2000 end-page: 362 article-title: 1H NMR visible lipids in the life and death of cells publication-title: Trends Biochem Sci – volume: 40 start-page: 812 year: 1998 end-page: 815 article-title: Automated spectral analysis. I. Formation of a priori information by spectral simulation publication-title: Magn Reson Med – start-page: 26 year: 1998 – volume: 14 start-page: 278 year: 2001 end-page: 283 article-title: Cramer‐Rao bounds: an evaluation tool for quantitation publication-title: NMR Biomed – volume: 3 start-page: 5 year: 1997 end-page: 14 article-title: Analysis of proton brain spectra from human infants by fitting linear combinations of model spectra publication-title: J Magn Reson Anal – volume: 88 start-page: 28 year: 1990 end-page: 41 article-title: Highly effective water suppression for in vivo proton NMR spectroscopy (DRYSTEAM) publication-title: J Magn Reson – volume: 30 start-page: 672 year: 1993 end-page: 679 article-title: Estimation of metabolite concentration from localized in vivo proton NMR spectra publication-title: Magn Reson Med – volume: 106 start-page: 181 year: 1995 end-page: 186 article-title: Improved water suppression for localized in vivo 1H spectroscopy publication-title: J Magn Reson Series B – volume: 594 start-page: 343 year: 1992 end-page: 346 article-title: Regional distribution of glutamate and aspartate in adult and old human brain publication-title: Brain Res – volume: 6 start-page: 92 year: 1988 end-page: 98 article-title: Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge publication-title: Magn Reson Med – volume: 11 start-page: 32 year: 1998 end-page: 39 article-title: New approach for quantitation of short echo time in vivo 1H MR spectra of brain using AMARES publication-title: NMR Biomed – volume: 45 start-page: 966 year: 2001 end-page: 972 article-title: Representation of strong baseline contributions in 1H MR spectra publication-title: Magn Reson Med – volume: 129 start-page: 35 year: 1997 end-page: 43 article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge publication-title: J Magn Reson – volume: 184 start-page: 123 year: 1992 end-page: 130 article-title: Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy publication-title: Radiology – year: 1984 – volume: 13 start-page: 129 year: 2000 end-page: 153 article-title: Proton NMR chemical shifts and coupling constants for brain metabolites publication-title: NMR Biomed – volume: 40 start-page: 816 year: 1998 end-page: 821 article-title: Automated spectral analysis. II. Application of wavelet shrinkage for characterization of non‐parameterized signals publication-title: Magn Reson Med – volume: 15 start-page: 305 year: 1990 end-page: 319 article-title: Improved quantification of in vivo 1H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into the spectral fitting publication-title: Magn Reson Med – volume: 40 start-page: 822 year: 1998 end-page: 831 article-title: Automated spectral analysis. III. Application to in vivo proton MR spectroscopy and spectroscopic imaging publication-title: Magn Reson Med – volume: 3 start-page: 15 year: 1997 end-page: 20 article-title: 1H NMR and prior knowledge based lineshape fitting analysis: a powerful combination for quantitative biochemistry of plasma and lipoproteins publication-title: J Magn Reson Anal – volume: 46 start-page: 855 year: 2001 end-page: 863 article-title: Characterization of the macromolecule baseline in localized H‐MR spectra of human brain publication-title: Magn Reson Med – start-page: 586 year: 1999 – volume: 39 start-page: 899 year: 1998 end-page: 911 article-title: Versatile frequency domain fitting using time domain models and prior knowledge publication-title: Magn Reson Med – volume: 124 start-page: 953 year: 2001 end-page: 961 article-title: Proton MR spectroscopy with metabolite‐nulling reveals elevated macromolecules in acute multiple sclerosis publication-title: Brain – volume: 37 start-page: 34 year: 1997 end-page: 47 article-title: In vivo measurement of distributions and water contents in normal human brain publication-title: Magn Reson Med – volume: 46 start-page: 474 year: 1999 end-page: 485 article-title: Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS publication-title: Pediatr Res – start-page: 587 year: 2000 – volume: 31 start-page: 155 year: 1997 end-page: 195 article-title: Quantitative localized H‐MR spectroscopy for clinical use publication-title: Prog NMR Spectrosc – volume: 102 start-page: 1 year: 1993 end-page: 8 article-title: Absolute quantitation of water and metabolites in the human brain. I. Compartments and water publication-title: J Magn Reson Series B |
SSID | ssj0009974 |
Score | 1.6729143 |
Snippet | Localized short‐echo‐time 1H‐MR spectra of human brain contain contributions of many low‐molecular‐weight metabolites and baseline contributions of... Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of... |
SourceID | proquest pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 440 |
SubjectTerms | 1H-magnetic resonance spectroscopy quantitation Adolescent Adult Aged Biological and medical sciences brain Brain - metabolism Brain Chemistry Female glutamate Humans Investigative techniques, diagnostic techniques (general aspects) Macromolecular Substances macromolecules Magnetic Resonance Spectroscopy - methods Male Medical sciences Middle Aged Nervous system Radiodiagnosis. Nmr imagery. Nmr spectrometry |
Title | Quantitative 1H-magnetic resonance spectroscopy of human brain: Influence of composition and parameterization of the basis set in linear combination model-fitting |
URI | https://api.istex.fr/ark:/67375/WNG-V3JNSHS3-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.10246 https://www.ncbi.nlm.nih.gov/pubmed/12210908 https://www.proquest.com/docview/72056985 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2qKhWx4VFe4VG8QIhN2jwcO4YVAspQaUaipdAFkuUkNhpVk1STGantik_gK_gwvoR7nWRGRSwQu0i2JT-u7XPjc88FeOaErehiCIVKs5ALjucg-hlhaWUuJN4_LqfY4fFEjI75wUl2sgGvhliYTh9i9cONdoY_r2mDm6LdW4uGzuYz0h3gJLcdp4J0898erqWjlOoUmCWnc0bxQVUoSvZWLRGQ0lyeEyHStDgnrktm8Te0eRW8-ttn_yZ8HfrdkU5Od5eLYre8_EPS8T8Hdgtu9KiUve7M6DZs2Hobro37d_dt2PJE0bK9Az8_Lk3tA9PwmGTx6Nf3HzPzraZQSIaee0P6HZb5-E3SyWzOLljjmM8EyApKR_GSfRjyolAJUdp73hgzdcVIinxGFJ0-PpTqIEZleNtOW9baBZvWjMZo5tQW_fqums_og51xU0_kvgvH--8-vRmFfa6HcBqjTxW6BN1ZxaUziBAjJyM0LlOoJLfKcsSEsbW5iXNlKoEuVuKMIRmhqpIZetlOluk92Kyb2j4AZrO8wlJRpEXGZakKy6MccZfjhbDGRAE896uuzzo9D23mp0Rvk5n-MnmvP6cHk6PRUapFADtXzGLVICYFnUzyAJ4OdqJxV9JTi6lts2y1TBBYqjwL4H5nPuu2SUJc2DyAF94I1gVePzrRuPzaL78eH479x8N_r_oIrvt0NZ4E9xg2F_OlfYKoaVHs-O3xG3ZaF0A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qRVA2PMorPFovEGKTNg8nThAbBJS0NCPRF90gy0nsalRNUk1mJGDFJ_AVfBhfwr1OMqMiFohdJNuSHV_b59rnngvwzMS6ooPBjdMwcnnMcR9EP8MttUhigeePSSh2OB_F2THfO41OV-DVEAvT6UMsLtxoZdj9mhY4XUhvL1VDJ9MJCQ_w-Apc5Qg0yPV6e7AUj0rTToNZcNppUj7oCnnB9qIpQlL6m1-IEqla_CumS2fxN7x5Gb7a82fnFnweet7RTs635rNiq_z2h6jj_w7tNtzsgSl73VnSHVjR9Tpcz_un93W4ZrmiZXsXfn6cq9rGpuFOyfzs1_cfE3VWUzQkQ-e9IQkPzWwIJ0llNhdfWWOYTQbICspI8ZLtDqlRqIRY7T11jKm6YqRGPiGWTh8iSnUQpjI8cMcta_WMjWtGg1RTaouufVfNJvXBzpix5XLfg-Odd0dvMrdP9-COfXSrXBOgR5tyYRSCRM8ID-1LFWmQ6FRzhIW-1onyk1RVMXpZgVGKlISqSkToaBtRhvdhtW5q_RCYjpIKS-MiLCIuyrTQ3EsQehlexFopz4HndtrlRSfpIdX0nBhuIpKfRu_lSbg3OswOQxk7sHHJLhYNfBLRiQR3YHMwFIkLk15bVK2beStFgNgyTSIHHnT2s2wbBESHTRx4Ya1gWWAlpAOJ0y_t9Mv8ILcfj_696iasZUf5vtzfHX14DDds9hrLiXsCq7PpXD9FEDUrNuxa-Q3Nfhtf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qRVRseJRXeLReIMQmbR6OncAKAcO0MCNoKXSBZDmJjUbVJKPJjASs-AS-gg_jS7jXSWZUxAKxi2Rb8uPaPjc-91yAh1aYki4GX2Rx4nPB8RxEP8MvjEyFxPvHphQ7PBqL4Qk_PE1ON-BpHwvT6kOsfrjRznDnNW3wWWn316Kh0_mUdAe4uAAXuUAkQYjoaK0dlWWtBLPkdNBkvJcVCqL9VVNEpDSZX4gRqRucFNtms_gb3DyPXt31M7gKn_qOt6yTs73lIt8rvv2h6fifI7sGVzpYyp61dnQdNky1DVuj7uF9Gy45pmjR3ICf75a6cpFpeE6ycPjr-4-p_lxRLCRD170mAQ_DXAAnCWXWs6-stsylAmQ55aN4wg76xChUQpz2jjjGdFUy0iKfEkenCxClOghSGV63k4Y1ZsEmFaMx6jm1Rce-reZS-mBn7MQxuW_CyeDl--dDv0v24E9CdKp8G6E_m3FpNULEwMoArUvnWZSazHAEhaExqQ7TTJcCfazIak06QmUpE3SzrSziW7BZ1ZW5A8wkaYmlIo_zhMsiyw0PUgRelufCaB148Mitupq1gh5Kz8-I3yYT9XH8Sn2ID8fHw-NYCQ92zpnFqkFIEjqJ5B7s9naicFvSW4uuTL1slIwQWWZp4sHt1nzWbaOIyLCpB4-dEawLnIB0pHD5lVt-NToauY-7_151F7bevhioNwfj1_fgsktd4whx92FzMV-aB4igFvmO2ym_AXm5Gg4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+1H-magnetic+resonance+spectroscopy+of+human+brain%3A+Influence+of+composition+and+parameterization+of+the+basis+set+in+linear+combination+model-fitting&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Hofmann%2C+L&rft.au=Slotboom%2C+J&rft.au=Jung%2C+B&rft.au=Maloca%2C+P&rft.date=2002-09-01&rft.issn=0740-3194&rft.volume=48&rft.issue=3&rft.spage=440&rft_id=info:doi/10.1002%2Fmrm.10246&rft_id=info%3Apmid%2F12210908&rft.externalDocID=12210908 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |