Quantitative 1H-magnetic resonance spectroscopy of human brain: Influence of composition and parameterization of the basis set in linear combination model-fitting

Localized short‐echo‐time 1H‐MR spectra of human brain contain contributions of many low‐molecular‐weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeli...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 48; no. 3; pp. 440 - 453
Main Authors Hofmann, L., Slotboom, J., Jung, B., Maloca, P., Boesch, C., Kreis, R.
Format Journal Article
LanguageEnglish
Published New York Wiley Subscription Services, Inc., A Wiley Company 01.09.2002
Williams & Wilkins
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
DOI10.1002/mrm.10246

Cover

Abstract Localized short‐echo‐time 1H‐MR spectra of human brain contain contributions of many low‐molecular‐weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information. Magn Reson Med 48:440–453, 2002. © 2002 Wiley‐Liss, Inc.
AbstractList Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.
Localized short‐echo‐time 1H‐MR spectra of human brain contain contributions of many low‐molecular‐weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information. Magn Reson Med 48:440–453, 2002. © 2002 Wiley‐Liss, Inc.
Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.
Author Jung, B.
Slotboom, J.
Boesch, C.
Hofmann, L.
Maloca, P.
Kreis, R.
Author_xml – sequence: 1
  givenname: L.
  surname: Hofmann
  fullname: Hofmann, L.
  organization: Department of Clinical Research, Unit for MR Spectroscopy & Methodology, University Berne, Switzerland
– sequence: 2
  givenname: J.
  surname: Slotboom
  fullname: Slotboom, J.
  organization: Department of Clinical Research, Unit for MR Spectroscopy & Methodology, University Berne, Switzerland
– sequence: 3
  givenname: B.
  surname: Jung
  fullname: Jung, B.
  organization: Department of Clinical Research, Unit for MR Spectroscopy & Methodology, University Berne, Switzerland
– sequence: 4
  givenname: P.
  surname: Maloca
  fullname: Maloca, P.
  organization: Department of Clinical Research, Unit for MR Spectroscopy & Methodology, University Berne, Switzerland
– sequence: 5
  givenname: C.
  surname: Boesch
  fullname: Boesch, C.
  organization: Department of Clinical Research, Unit for MR Spectroscopy & Methodology, University Berne, Switzerland
– sequence: 6
  givenname: R.
  surname: Kreis
  fullname: Kreis, R.
  email: roland.kreis@insel.ch
  organization: Department of Clinical Research, Unit for MR Spectroscopy & Methodology, University Berne, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13880574$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12210908$$D View this record in MEDLINE/PubMed
BookMark eNpF0ctu1TAQBmALFdHTwoIXQN7ALq3tOHHMDlXQU9SLSrksrUkyaQ2JndoOcPo4PCk5F-jKI8_3z2LmgOw575CQl5wdccbE8RCGuRCyfEIWvBAiE4WWe2TBlGRZzrXcJwcxfmeMaa3kM7LPheBMs2pB_lxP4JJNkOxPpHyZDXDrMNmGBozegWuQxhGbFHxs_LiivqN30wCO1gGse0vPXNdPuGZzp_HD6KNN1jsKrqUjBBgwYbAPsPmcTbpDWkO0kUZM1DraW4cQ1tnaui0bfIt91tmUrLt9Tp520Ed8sXsPyZcP7z-fLLPzq9Ozk3fnmeWlKLNOaFVpqTqQvGSdYlgj1FpUqFFyLjhiBbzS0JayUqID4IWUbasKxfNONfkhebOdOwZ_P2FMZrCxwb4Hh36KRglWlLoqZvhqB6d6wNaMwQ4QVubfVmfwegcgNtB3YV6jjY8urypWKDm74637ZXtcPfaZWZ_VzGc1m7Oai08Xm2JOZNuEjQl__09A-GFKlavCfLs8NV_zj5c3y5vclPlf_CSotg
CODEN MRMEEN
ContentType Journal Article
Copyright Copyright © 2002 Wiley‐Liss, Inc.
2002 INIST-CNRS
Copyright 2002 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2002 Wiley‐Liss, Inc.
– notice: 2002 INIST-CNRS
– notice: Copyright 2002 Wiley-Liss, Inc.
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mrm.10246
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 453
ExternalDocumentID 12210908
13880574
MRM10246
ark_67375_WNG_V3JNSHS3_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Swiss National Foundation
  funderid: 31‐43280.95; 31‐59082.99
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-i1626-f2978947fa4160f70ebeab928e9e41121ee8a189ad64872faa1544dd75713f7c3
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Fri Jul 11 00:20:23 EDT 2025
Wed Feb 19 01:24:45 EST 2025
Mon Jul 21 09:12:05 EDT 2025
Tue Sep 09 05:11:40 EDT 2025
Wed Oct 30 09:57:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Human
Spectrometry
Macromolecule
Metabolite
Reproducibility
Medical imagery
Parameterization
Nuclear magnetic resonance imaging
Quantitative analysis
Brain (vertebrata)
Language English
License CC BY 4.0
Copyright 2002 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1626-f2978947fa4160f70ebeab928e9e41121ee8a189ad64872faa1544dd75713f7c3
Notes istex:CD59AB63D94614502D55808DDC59E4AB56CC8960
ark:/67375/WNG-V3JNSHS3-6
ArticleID:MRM10246
Swiss National Foundation - No. 31-43280.95; No. 31-59082.99
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12210908
PQID 72056985
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_72056985
pubmed_primary_12210908
pascalfrancis_primary_13880574
wiley_primary_10_1002_mrm_10246_MRM10246
istex_primary_ark_67375_WNG_V3JNSHS3_6
PublicationCentury 2000
PublicationDate September 2002
PublicationDateYYYYMMDD 2002-09-01
PublicationDate_xml – month: 09
  year: 2002
  text: September 2002
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Baltimore, MD
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2002
Publisher Wiley Subscription Services, Inc., A Wiley Company
Williams & Wilkins
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Williams & Wilkins
References Soher BJ, Hurd RE, Sailasuta N, Barker PB. Quantitation of automated single-voxel proton MRS using cerebral water as an internal reference. Magn Reson Med 1996; 36: 335-339.
Mierisova S, van den Boogaart A, Tkac I, Van Hecke P, Vanhamme L, Liptaj T. New approach for quantitation of short echo time in vivo 1H MR spectra of brain using AMARES. NMR Biomed 1998; 11: 32-39.
Banay-Schwartz M, Lajtha A, Palkovits M. Regional distribution of glutamate and aspartate in adult and old human brain. Brain Res 1992; 594: 343-346.
Moonen CTW, van Zijl PCM. Highly effective water suppression for in vivo proton NMR spectroscopy (DRYSTEAM). J Magn Reson 1990; 88: 28-41.
Provencher SW. Estimation of metabolite concentration from localized in vivo proton NMR spectra. Magn Reson Med 1993; 30: 672-679.
Hennig J. The application of phase rotation for localized in vivo proton spectroscopy with short echo times. J Magn Reson 1992; 96: 40-49.
Ernst T, Hennig J. Improved water suppression for localized in vivo 1H spectroscopy. J Magn Reson Series B 1995; 106: 181-186.
Soher BJ, Young K, Govindaraju V, Maudsley AA. Automated spectral analysis. III. Application to in vivo proton MR spectroscopy and spectroscopic imaging. Magn Reson Med 1998; 40: 822-831.
Ernst T, Kreis R, Ross BD. Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson Series B 1993; 102: 1-8.
Vanhamme L, van den Boogaart A, van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997; 129: 35-43.
Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM. Discrimination of metabolite from lipid and macromolecule resonances in cerebral infarction in humans using short echo proton spectroscopy. J Magn Reson Imag 1997; 7: 1116-1121.
Kreis R. Quantitative localized 1H-MR spectroscopy for clinical use. Prog NMR Spectrosc 1997; 31: 155-195.
Soher BJ, Young K, Maudsley AA. Representation of strong baseline contributions in 1H MR spectra. Magn Reson Med 2001; 45: 966-972.
Cady EB, D'Souza PC. Analysis of proton brain spectra from human infants by fitting linear combinations of model spectra. J Magn Reson Anal 1997; 3: 5-14.
Slotboom J, Boesch C, Kreis R. Versatile frequency domain fitting using time domain models and prior knowledge. Magn Reson Med 1998; 39: 899-911.
Young K, Soher BJ, Maudsley AA. Automated spectral analysis. II. Application of wavelet shrinkage for characterization of non-parameterized signals. Magn Reson Med 1998; 40: 816-821.
Bartha R, Drost DJ, Williamson PC. Factors affecting the quantification of short echo in-vivo 1H MR spectra: prior knowledge, peak elimination, and filtering. NMR Biomed 1999; 12: 205-216.
Hakumaki JM, Kauppinen RA. 1H NMR visible lipids in the life and death of cells. Trends Biochem Sci 2000; 25: 357-362.
Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, Frahm J. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 1999; 46: 474-485.
Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 2000; 13: 129-153.
Hofmann L, Slotboom J, Boesch C, Kreis R. Characterization of the macromolecule baseline in localized 1H-MR spectra of human brain. Magn Reson Med 2001; 46: 855-863.
de Graaf AA, Bovee WMMJ. Improved quantification of in vivo 1H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into the spectral fitting. Magn Reson Med 1990; 15: 305-319.
Young K, Govindaraju V, Soher BJ, Maudsley AA. Automated spectral analysis. I. Formation of a priori information by spectral simulation. Magn Reson Med 1998; 40: 812-815.
van der Veen JW, de Beer R, Luyten PR, van Ormondt D. Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn Reson Med 1988; 6: 92-98.
Mader I, Seeger U, Weissert R, Klose U, Naegele T, Melms A, Grodd W. Proton MR spectroscopy with metabolite-nulling reveals elevated macromolecules in acute multiple sclerosis. Brain 2001; 124: 953-961.
Kreis R, Ross BD. Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy. Radiology 1992; 184: 123-130.
Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J Magn Reson 1999; 141: 104-120.
Ala-Korpela M, Korhonen A, Liinamaa MJ, Savolainen MJ, Jokisaari J, Kesäniemi YA. 1H NMR and prior knowledge based lineshape fitting analysis: a powerful combination for quantitative biochemistry of plasma and lipoproteins. J Magn Reson Anal 1997; 3: 15-20.
Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D. Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 2001; 14: 278-283.
Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DKB, Paty DW. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34-47.
2001; 124
1992; 184
1990; 15
2000; 25
1998
1999; 46
1999; 141
1996; 36
2001; 45
1998; 40
1993; 102
1997; 3
2001; 46
1997; 7
1999
1992; 96
1998; 39
1990; 88
1997; 129
2000
1997; 31
1992; 594
2000; 13
1988; 6
1997; 37
1993; 30
1995; 106
1999; 12
1984
2001; 14
1998; 11
References_xml – reference: Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, Frahm J. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 1999; 46: 474-485.
– reference: van der Veen JW, de Beer R, Luyten PR, van Ormondt D. Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn Reson Med 1988; 6: 92-98.
– reference: de Graaf AA, Bovee WMMJ. Improved quantification of in vivo 1H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into the spectral fitting. Magn Reson Med 1990; 15: 305-319.
– reference: Kreis R. Quantitative localized 1H-MR spectroscopy for clinical use. Prog NMR Spectrosc 1997; 31: 155-195.
– reference: Mierisova S, van den Boogaart A, Tkac I, Van Hecke P, Vanhamme L, Liptaj T. New approach for quantitation of short echo time in vivo 1H MR spectra of brain using AMARES. NMR Biomed 1998; 11: 32-39.
– reference: Cady EB, D'Souza PC. Analysis of proton brain spectra from human infants by fitting linear combinations of model spectra. J Magn Reson Anal 1997; 3: 5-14.
– reference: Kreis R, Ross BD. Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy. Radiology 1992; 184: 123-130.
– reference: Hennig J. The application of phase rotation for localized in vivo proton spectroscopy with short echo times. J Magn Reson 1992; 96: 40-49.
– reference: Hofmann L, Slotboom J, Boesch C, Kreis R. Characterization of the macromolecule baseline in localized 1H-MR spectra of human brain. Magn Reson Med 2001; 46: 855-863.
– reference: Mader I, Seeger U, Weissert R, Klose U, Naegele T, Melms A, Grodd W. Proton MR spectroscopy with metabolite-nulling reveals elevated macromolecules in acute multiple sclerosis. Brain 2001; 124: 953-961.
– reference: Ernst T, Hennig J. Improved water suppression for localized in vivo 1H spectroscopy. J Magn Reson Series B 1995; 106: 181-186.
– reference: Provencher SW. Estimation of metabolite concentration from localized in vivo proton NMR spectra. Magn Reson Med 1993; 30: 672-679.
– reference: Vanhamme L, van den Boogaart A, van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997; 129: 35-43.
– reference: Bartha R, Drost DJ, Williamson PC. Factors affecting the quantification of short echo in-vivo 1H MR spectra: prior knowledge, peak elimination, and filtering. NMR Biomed 1999; 12: 205-216.
– reference: Soher BJ, Young K, Govindaraju V, Maudsley AA. Automated spectral analysis. III. Application to in vivo proton MR spectroscopy and spectroscopic imaging. Magn Reson Med 1998; 40: 822-831.
– reference: Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D. Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 2001; 14: 278-283.
– reference: Young K, Govindaraju V, Soher BJ, Maudsley AA. Automated spectral analysis. I. Formation of a priori information by spectral simulation. Magn Reson Med 1998; 40: 812-815.
– reference: Soher BJ, Young K, Maudsley AA. Representation of strong baseline contributions in 1H MR spectra. Magn Reson Med 2001; 45: 966-972.
– reference: Soher BJ, Hurd RE, Sailasuta N, Barker PB. Quantitation of automated single-voxel proton MRS using cerebral water as an internal reference. Magn Reson Med 1996; 36: 335-339.
– reference: Banay-Schwartz M, Lajtha A, Palkovits M. Regional distribution of glutamate and aspartate in adult and old human brain. Brain Res 1992; 594: 343-346.
– reference: Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM. Discrimination of metabolite from lipid and macromolecule resonances in cerebral infarction in humans using short echo proton spectroscopy. J Magn Reson Imag 1997; 7: 1116-1121.
– reference: Slotboom J, Boesch C, Kreis R. Versatile frequency domain fitting using time domain models and prior knowledge. Magn Reson Med 1998; 39: 899-911.
– reference: Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 2000; 13: 129-153.
– reference: Moonen CTW, van Zijl PCM. Highly effective water suppression for in vivo proton NMR spectroscopy (DRYSTEAM). J Magn Reson 1990; 88: 28-41.
– reference: Ernst T, Kreis R, Ross BD. Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson Series B 1993; 102: 1-8.
– reference: Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J Magn Reson 1999; 141: 104-120.
– reference: Young K, Soher BJ, Maudsley AA. Automated spectral analysis. II. Application of wavelet shrinkage for characterization of non-parameterized signals. Magn Reson Med 1998; 40: 816-821.
– reference: Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DKB, Paty DW. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34-47.
– reference: Ala-Korpela M, Korhonen A, Liinamaa MJ, Savolainen MJ, Jokisaari J, Kesäniemi YA. 1H NMR and prior knowledge based lineshape fitting analysis: a powerful combination for quantitative biochemistry of plasma and lipoproteins. J Magn Reson Anal 1997; 3: 15-20.
– reference: Hakumaki JM, Kauppinen RA. 1H NMR visible lipids in the life and death of cells. Trends Biochem Sci 2000; 25: 357-362.
– volume: 36
  start-page: 335
  year: 1996
  end-page: 339
  article-title: Quantitation of automated single‐voxel proton MRS using cerebral water as an internal reference
  publication-title: Magn Reson Med
– volume: 96
  start-page: 40
  year: 1992
  end-page: 49
  article-title: The application of phase rotation for localized in vivo proton spectroscopy with short echo times
  publication-title: J Magn Reson
– volume: 12
  start-page: 205
  year: 1999
  end-page: 216
  article-title: Factors affecting the quantification of short echo in‐vivo 1H MR spectra: prior knowledge, peak elimination, and filtering
  publication-title: NMR Biomed
– volume: 7
  start-page: 1116
  year: 1997
  end-page: 1121
  article-title: Discrimination of metabolite from lipid and macromolecule resonances in cerebral infarction in humans using short echo proton spectroscopy
  publication-title: J Magn Reson Imag
– volume: 141
  start-page: 104
  year: 1999
  end-page: 120
  article-title: Toward an in vivo neurochemical profile: quantification of 18 metabolites in short‐echo‐time (1)H NMR spectra of the rat brain
  publication-title: J Magn Reson
– volume: 25
  start-page: 357
  year: 2000
  end-page: 362
  article-title: 1H NMR visible lipids in the life and death of cells
  publication-title: Trends Biochem Sci
– volume: 40
  start-page: 812
  year: 1998
  end-page: 815
  article-title: Automated spectral analysis. I. Formation of a priori information by spectral simulation
  publication-title: Magn Reson Med
– start-page: 26
  year: 1998
– volume: 14
  start-page: 278
  year: 2001
  end-page: 283
  article-title: Cramer‐Rao bounds: an evaluation tool for quantitation
  publication-title: NMR Biomed
– volume: 3
  start-page: 5
  year: 1997
  end-page: 14
  article-title: Analysis of proton brain spectra from human infants by fitting linear combinations of model spectra
  publication-title: J Magn Reson Anal
– volume: 88
  start-page: 28
  year: 1990
  end-page: 41
  article-title: Highly effective water suppression for in vivo proton NMR spectroscopy (DRYSTEAM)
  publication-title: J Magn Reson
– volume: 30
  start-page: 672
  year: 1993
  end-page: 679
  article-title: Estimation of metabolite concentration from localized in vivo proton NMR spectra
  publication-title: Magn Reson Med
– volume: 106
  start-page: 181
  year: 1995
  end-page: 186
  article-title: Improved water suppression for localized in vivo 1H spectroscopy
  publication-title: J Magn Reson Series B
– volume: 594
  start-page: 343
  year: 1992
  end-page: 346
  article-title: Regional distribution of glutamate and aspartate in adult and old human brain
  publication-title: Brain Res
– volume: 6
  start-page: 92
  year: 1988
  end-page: 98
  article-title: Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge
  publication-title: Magn Reson Med
– volume: 11
  start-page: 32
  year: 1998
  end-page: 39
  article-title: New approach for quantitation of short echo time in vivo 1H MR spectra of brain using AMARES
  publication-title: NMR Biomed
– volume: 45
  start-page: 966
  year: 2001
  end-page: 972
  article-title: Representation of strong baseline contributions in 1H MR spectra
  publication-title: Magn Reson Med
– volume: 129
  start-page: 35
  year: 1997
  end-page: 43
  article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge
  publication-title: J Magn Reson
– volume: 184
  start-page: 123
  year: 1992
  end-page: 130
  article-title: Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy
  publication-title: Radiology
– year: 1984
– volume: 13
  start-page: 129
  year: 2000
  end-page: 153
  article-title: Proton NMR chemical shifts and coupling constants for brain metabolites
  publication-title: NMR Biomed
– volume: 40
  start-page: 816
  year: 1998
  end-page: 821
  article-title: Automated spectral analysis. II. Application of wavelet shrinkage for characterization of non‐parameterized signals
  publication-title: Magn Reson Med
– volume: 15
  start-page: 305
  year: 1990
  end-page: 319
  article-title: Improved quantification of in vivo 1H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into the spectral fitting
  publication-title: Magn Reson Med
– volume: 40
  start-page: 822
  year: 1998
  end-page: 831
  article-title: Automated spectral analysis. III. Application to in vivo proton MR spectroscopy and spectroscopic imaging
  publication-title: Magn Reson Med
– volume: 3
  start-page: 15
  year: 1997
  end-page: 20
  article-title: 1H NMR and prior knowledge based lineshape fitting analysis: a powerful combination for quantitative biochemistry of plasma and lipoproteins
  publication-title: J Magn Reson Anal
– volume: 46
  start-page: 855
  year: 2001
  end-page: 863
  article-title: Characterization of the macromolecule baseline in localized H‐MR spectra of human brain
  publication-title: Magn Reson Med
– start-page: 586
  year: 1999
– volume: 39
  start-page: 899
  year: 1998
  end-page: 911
  article-title: Versatile frequency domain fitting using time domain models and prior knowledge
  publication-title: Magn Reson Med
– volume: 124
  start-page: 953
  year: 2001
  end-page: 961
  article-title: Proton MR spectroscopy with metabolite‐nulling reveals elevated macromolecules in acute multiple sclerosis
  publication-title: Brain
– volume: 37
  start-page: 34
  year: 1997
  end-page: 47
  article-title: In vivo measurement of distributions and water contents in normal human brain
  publication-title: Magn Reson Med
– volume: 46
  start-page: 474
  year: 1999
  end-page: 485
  article-title: Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS
  publication-title: Pediatr Res
– start-page: 587
  year: 2000
– volume: 31
  start-page: 155
  year: 1997
  end-page: 195
  article-title: Quantitative localized H‐MR spectroscopy for clinical use
  publication-title: Prog NMR Spectrosc
– volume: 102
  start-page: 1
  year: 1993
  end-page: 8
  article-title: Absolute quantitation of water and metabolites in the human brain. I. Compartments and water
  publication-title: J Magn Reson Series B
SSID ssj0009974
Score 1.6729143
Snippet Localized short‐echo‐time 1H‐MR spectra of human brain contain contributions of many low‐molecular‐weight metabolites and baseline contributions of...
Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of...
SourceID proquest
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 440
SubjectTerms 1H-magnetic resonance spectroscopy quantitation
Adolescent
Adult
Aged
Biological and medical sciences
brain
Brain - metabolism
Brain Chemistry
Female
glutamate
Humans
Investigative techniques, diagnostic techniques (general aspects)
Macromolecular Substances
macromolecules
Magnetic Resonance Spectroscopy - methods
Male
Medical sciences
Middle Aged
Nervous system
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Title Quantitative 1H-magnetic resonance spectroscopy of human brain: Influence of composition and parameterization of the basis set in linear combination model-fitting
URI https://api.istex.fr/ark:/67375/WNG-V3JNSHS3-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.10246
https://www.ncbi.nlm.nih.gov/pubmed/12210908
https://www.proquest.com/docview/72056985
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2qKhWx4VFe4VG8QIhN2jwcO4YVAspQaUaipdAFkuUkNhpVk1STGantik_gK_gwvoR7nWRGRSwQu0i2JT-u7XPjc88FeOaErehiCIVKs5ALjucg-hlhaWUuJN4_LqfY4fFEjI75wUl2sgGvhliYTh9i9cONdoY_r2mDm6LdW4uGzuYz0h3gJLcdp4J0898erqWjlOoUmCWnc0bxQVUoSvZWLRGQ0lyeEyHStDgnrktm8Te0eRW8-ttn_yZ8HfrdkU5Od5eLYre8_EPS8T8Hdgtu9KiUve7M6DZs2Hobro37d_dt2PJE0bK9Az8_Lk3tA9PwmGTx6Nf3HzPzraZQSIaee0P6HZb5-E3SyWzOLljjmM8EyApKR_GSfRjyolAJUdp73hgzdcVIinxGFJ0-PpTqIEZleNtOW9baBZvWjMZo5tQW_fqums_og51xU0_kvgvH--8-vRmFfa6HcBqjTxW6BN1ZxaUziBAjJyM0LlOoJLfKcsSEsbW5iXNlKoEuVuKMIRmhqpIZetlOluk92Kyb2j4AZrO8wlJRpEXGZakKy6MccZfjhbDGRAE896uuzzo9D23mp0Rvk5n-MnmvP6cHk6PRUapFADtXzGLVICYFnUzyAJ4OdqJxV9JTi6lts2y1TBBYqjwL4H5nPuu2SUJc2DyAF94I1gVePzrRuPzaL78eH479x8N_r_oIrvt0NZ4E9xg2F_OlfYKoaVHs-O3xG3ZaF0A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qRVA2PMorPFovEGKTNg8nThAbBJS0NCPRF90gy0nsalRNUk1mJGDFJ_AVfBhfwr1OMqMiFohdJNuSHV_b59rnngvwzMS6ooPBjdMwcnnMcR9EP8MttUhigeePSSh2OB_F2THfO41OV-DVEAvT6UMsLtxoZdj9mhY4XUhvL1VDJ9MJCQ_w-Apc5Qg0yPV6e7AUj0rTToNZcNppUj7oCnnB9qIpQlL6m1-IEqla_CumS2fxN7x5Gb7a82fnFnweet7RTs635rNiq_z2h6jj_w7tNtzsgSl73VnSHVjR9Tpcz_un93W4ZrmiZXsXfn6cq9rGpuFOyfzs1_cfE3VWUzQkQ-e9IQkPzWwIJ0llNhdfWWOYTQbICspI8ZLtDqlRqIRY7T11jKm6YqRGPiGWTh8iSnUQpjI8cMcta_WMjWtGg1RTaouufVfNJvXBzpix5XLfg-Odd0dvMrdP9-COfXSrXBOgR5tyYRSCRM8ID-1LFWmQ6FRzhIW-1onyk1RVMXpZgVGKlISqSkToaBtRhvdhtW5q_RCYjpIKS-MiLCIuyrTQ3EsQehlexFopz4HndtrlRSfpIdX0nBhuIpKfRu_lSbg3OswOQxk7sHHJLhYNfBLRiQR3YHMwFIkLk15bVK2beStFgNgyTSIHHnT2s2wbBESHTRx4Ya1gWWAlpAOJ0y_t9Mv8ILcfj_696iasZUf5vtzfHX14DDds9hrLiXsCq7PpXD9FEDUrNuxa-Q3Nfhtf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qRVRseJRXeLReIMQmbR6OncAKAcO0MCNoKXSBZDmJjUbVJKPJjASs-AS-gg_jS7jXSWZUxAKxi2Rb8uPaPjc-91yAh1aYki4GX2Rx4nPB8RxEP8MvjEyFxPvHphQ7PBqL4Qk_PE1ON-BpHwvT6kOsfrjRznDnNW3wWWn316Kh0_mUdAe4uAAXuUAkQYjoaK0dlWWtBLPkdNBkvJcVCqL9VVNEpDSZX4gRqRucFNtms_gb3DyPXt31M7gKn_qOt6yTs73lIt8rvv2h6fifI7sGVzpYyp61dnQdNky1DVuj7uF9Gy45pmjR3ICf75a6cpFpeE6ycPjr-4-p_lxRLCRD170mAQ_DXAAnCWXWs6-stsylAmQ55aN4wg76xChUQpz2jjjGdFUy0iKfEkenCxClOghSGV63k4Y1ZsEmFaMx6jm1Rce-reZS-mBn7MQxuW_CyeDl--dDv0v24E9CdKp8G6E_m3FpNULEwMoArUvnWZSazHAEhaExqQ7TTJcCfazIak06QmUpE3SzrSziW7BZ1ZW5A8wkaYmlIo_zhMsiyw0PUgRelufCaB148Mitupq1gh5Kz8-I3yYT9XH8Sn2ID8fHw-NYCQ92zpnFqkFIEjqJ5B7s9naicFvSW4uuTL1slIwQWWZp4sHt1nzWbaOIyLCpB4-dEawLnIB0pHD5lVt-NToauY-7_151F7bevhioNwfj1_fgsktd4whx92FzMV-aB4igFvmO2ym_AXm5Gg4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+1H-magnetic+resonance+spectroscopy+of+human+brain%3A+Influence+of+composition+and+parameterization+of+the+basis+set+in+linear+combination+model-fitting&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Hofmann%2C+L&rft.au=Slotboom%2C+J&rft.au=Jung%2C+B&rft.au=Maloca%2C+P&rft.date=2002-09-01&rft.issn=0740-3194&rft.volume=48&rft.issue=3&rft.spage=440&rft_id=info:doi/10.1002%2Fmrm.10246&rft_id=info%3Apmid%2F12210908&rft.externalDocID=12210908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon