Parallelizing x-ray photon correlation spectroscopy software tools using python multiprocessing

The third generation synchrotron facilities that are designed to deliver highly intense and bright X-ray beams along with the new area detectors capable of achieving high dynamic ratios and fast frame rates have enabled novel Coherent X-ray scattering experiments. X-ray Photon Correlation Spectrosco...

Full description

Saved in:
Bibliographic Details
Published in2017 New York Scientific Data Summit (NYSDS) pp. 1 - 10
Main Authors Abeykoon, Sameera K., Meifeng Lin, Van Dam, Kerstin Kleese
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The third generation synchrotron facilities that are designed to deliver highly intense and bright X-ray beams along with the new area detectors capable of achieving high dynamic ratios and fast frame rates have enabled novel Coherent X-ray scattering experiments. X-ray Photon Correlation Spectroscopy is such a technique that measures nano- and mesoscale dynamics in materials. The scikit-beam Python analysis library developed at the National Synchrotron Light Source-II at Brookhaven National Laboratory contains a serial version of Xray Photon Correlation Spectroscopy software tools to perform streaming analysis of structural dynamics of materials, which can be time consuming given the anticipated fast data rates and high image resolutions at the National Synchrotron Light Source-II. Therefore, it is essential to parallelize these data analysis tools to achieve the best performance on the available workstations that contain multi-core processors. In this paper, we report the progress that we have made in using the Python multiprocessing module to parallelize the time-correlation functions in scikit-beam. We will compare the results from different multiprocessing approaches, and discuss pros and cons associated with each method.
AbstractList The third generation synchrotron facilities that are designed to deliver highly intense and bright X-ray beams along with the new area detectors capable of achieving high dynamic ratios and fast frame rates have enabled novel Coherent X-ray scattering experiments. X-ray Photon Correlation Spectroscopy is such a technique that measures nano- and mesoscale dynamics in materials. The scikit-beam Python analysis library developed at the National Synchrotron Light Source-II at Brookhaven National Laboratory contains a serial version of Xray Photon Correlation Spectroscopy software tools to perform streaming analysis of structural dynamics of materials, which can be time consuming given the anticipated fast data rates and high image resolutions at the National Synchrotron Light Source-II. Therefore, it is essential to parallelize these data analysis tools to achieve the best performance on the available workstations that contain multi-core processors. In this paper, we report the progress that we have made in using the Python multiprocessing module to parallelize the time-correlation functions in scikit-beam. We will compare the results from different multiprocessing approaches, and discuss pros and cons associated with each method.
Author Abeykoon, Sameera K.
Meifeng Lin
Van Dam, Kerstin Kleese
Author_xml – sequence: 1
  givenname: Sameera K.
  surname: Abeykoon
  fullname: Abeykoon, Sameera K.
  email: sameera@bnl.gov
  organization: Comput. Sci. Initiative, Brookhaven Nat. Lab., Upton, NY, USA
– sequence: 2
  surname: Meifeng Lin
  fullname: Meifeng Lin
  organization: Comput. Sci. Initiative, Brookhaven Nat. Lab., Upton, NY, USA
– sequence: 3
  givenname: Kerstin Kleese
  surname: Van Dam
  fullname: Van Dam, Kerstin Kleese
  organization: Comput. Sci. Initiative, Brookhaven Nat. Lab., Upton, NY, USA
BookMark eNotT81OwzAYCxIcYOwF4JIXaGmaND9HNH6lCZAGB05VmnxlkbKmSjJBeXo6sZMty7bsC3Q6hAEQuiJVSUilbl4-N3ebsq6IKGUlm4rVJ2iphCQNlZwSTtg5at901N6Dd79u-MI_RdQTHrchhwGbECN4nd3M0wgmx5BMGCecQp-_dQScQ_AJ79MhOk55Oxt3e5_dGIOBdJAv0VmvfYLlERfo4-H-ffVUrF8fn1e368LNO-pCQKd1ZxpGRF_THqRRVlgrhFSsa6SseQ3WctrRxiguKGeSWVEZqjiDjii6QNf_vQ4A2jG6nY5Te7xN_wCz7FRZ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NYSDS.2017.8085042
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538631614
153863161X
EndPage 10
ExternalDocumentID 8085042
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i1612-7ebaabc5417f23fe8c9d7dd77894b588262edd63b35c96736484d70c3964eb193
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:13 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1612-7ebaabc5417f23fe8c9d7dd77894b588262edd63b35c96736484d70c3964eb193
OpenAccessLink https://www.osti.gov/servlets/purl/1426446
PageCount 10
ParticipantIDs ieee_primary_8085042
PublicationCentury 2000
PublicationDate 2017-Aug.
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-Aug.
PublicationDecade 2010
PublicationTitle 2017 New York Scientific Data Summit (NYSDS)
PublicationTitleAbbrev NYSDS
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.657964
Snippet The third generation synchrotron facilities that are designed to deliver highly intense and bright X-ray beams along with the new area detectors capable of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Coherent X-rays
Correlation
Instruction sets
Photonics
Python Multiprocessing
Spectroscopy
Synchrotrons
X-ray Photon Correlation Spectroscopy
Title Parallelizing x-ray photon correlation spectroscopy software tools using python multiprocessing
URI https://ieeexplore.ieee.org/document/8085042
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_hjSg4eTVeXpEnO6hjCxmAO5mnkpw7HWroO3f56k3abKB68lUehIQ_e-5p83_cAuJFG-6w7g7gSGBHMFJJSUhSuDh1NjMM2CJz7g6Q3Jk8TOqmB270Wxlpbks9sFB7Lu3yT6lU4Kmvz4K9GfME98D9ulVZrp4OJRXvwMnoYBbIWi7Yv_piYUjaM7hHo7z5V8UTeo1WhIr355cL437Ucg-a3NA8O903nBNTsogGmQ5mHmSjz2cYH4SfK5Rpmb6nHdVCH8RsV4Q2WsspgX5lma7j0BfhD5hYWaTpfwkCAf4XZOngJwIpmWGkIfLgJxt3H5_se2k5OQDOP4DxktkpKpSm5Y66DneVaGGYMY1wQRT2oTjrWmAQrTLUIzC7CiWGxxiIhvngLfArqi3RhzwD0AIZ7SKViZwxxjEnLk8QQHhMjLMX0HDTC5kyzyhxjut2Xi7_Dl-AwJKhi0LVAvchX9sp39UJdl-n8AoHpp6Y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSkBoy_7cGjG5O2a3tWCSoQEiDB09JfUyJhyxhR-OttN8BoPHhrXpp06Uve-7J-3_cAuBZa2azH2mOSIw8jKj0hBPHc02FMQh0j4wTO3V7YHuGnMRlXwM1WC2OMKchnxnfL4i1fJ2rhfpU1mPNXw7bg7ti-T5qlWmujhAl4o_cyuB84uhb111t_zEwpWkZrH3Q3h5VMkXd_kUtfrX75MP73aw5A_VucB_vbtnMIKmZWA1FfZG4qynSyskH46WViCdO3xCI7qNwAjpLyBgthpTOwTNIlnNsS_CEyA_Mkmc6ho8C_wnTp3ARgSTQsVQQ2XAej1sPwru2tZyd4E4vhLGg2UgipCL6lcRPFhimuqdaUMo4lsbA6bBqtQyQRUdxxuzDDmgYK8RDb8s3REajOkpk5BtBCGGZBlQxirXFMqTAsDDVmAdbcEEROQM1dTpSW9hjR-l5O_w5fgd32sNuJOo-95zOw55JV8unOQTXPFubC9vhcXhap_QJuParw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+New+York+Scientific+Data+Summit+%28NYSDS%29&rft.atitle=Parallelizing+x-ray+photon+correlation+spectroscopy+software+tools+using+python+multiprocessing&rft.au=Abeykoon%2C+Sameera+K.&rft.au=Meifeng+Lin&rft.au=Van+Dam%2C+Kerstin+Kleese&rft.date=2017-08-01&rft.pub=IEEE&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FNYSDS.2017.8085042&rft.externalDocID=8085042