Physiological-based emotion recognition with IRS model

A major challenge in physiology-based emotion recognition is to establish an effective emotion recognizer for multi-users in the user-independent scenario. The recognition result is not satisfied because it ignores the difference in individual response pattern, which can be attributed to IRS (Indivi...

Full description

Saved in:
Bibliographic Details
Published in2014 International Conference on Smart Computing pp. 208 - 215
Main Authors Chao Li, Zhiyong Feng, Chao Xu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2014
Subjects
Online AccessGet full text
DOI10.1109/SMARTCOMP.2014.7043860

Cover

Loading…
Abstract A major challenge in physiology-based emotion recognition is to establish an effective emotion recognizer for multi-users in the user-independent scenario. The recognition result is not satisfied because it ignores the difference in individual response pattern, which can be attributed to IRS (Individual Response Specificity) and SRS(Stimuli Response Specificity) in psychophysiology. To improve the performance of emotion recognition, this paper proposes a Group-Based IRS model by adaptively matching a suitable recognizer in accordance with user's IRS level. Specifically, the users are put into distinct groups by using cluster analysis techniques, where users within the same group have similar IRS level than other groups. Then physiological data of users from each group is utilized to build the corresponding emotion recognizers. After categorizing a new user into one group according to his IRS level, the new user's emotion state is predicted by the corresponding emotion recognizer. To validate our model, the affective physiological data was collected from 11 subjects in four induced emotions(neutral, sadness, fear and pleasure), three-channel bio-sensors were used to measure users electrocardiogram (ECG), galvanic skin response (GSR) and photo plethysmography (PPG). The results show that the recognition precision in Group-based IRS model is higher than general model.
AbstractList A major challenge in physiology-based emotion recognition is to establish an effective emotion recognizer for multi-users in the user-independent scenario. The recognition result is not satisfied because it ignores the difference in individual response pattern, which can be attributed to IRS (Individual Response Specificity) and SRS(Stimuli Response Specificity) in psychophysiology. To improve the performance of emotion recognition, this paper proposes a Group-Based IRS model by adaptively matching a suitable recognizer in accordance with user's IRS level. Specifically, the users are put into distinct groups by using cluster analysis techniques, where users within the same group have similar IRS level than other groups. Then physiological data of users from each group is utilized to build the corresponding emotion recognizers. After categorizing a new user into one group according to his IRS level, the new user's emotion state is predicted by the corresponding emotion recognizer. To validate our model, the affective physiological data was collected from 11 subjects in four induced emotions(neutral, sadness, fear and pleasure), three-channel bio-sensors were used to measure users electrocardiogram (ECG), galvanic skin response (GSR) and photo plethysmography (PPG). The results show that the recognition precision in Group-based IRS model is higher than general model.
Author Zhiyong Feng
Chao Li
Chao Xu
Author_xml – sequence: 1
  surname: Chao Li
  fullname: Chao Li
  email: superlee@tju.edu.cn
  organization: Sch. of Comput. Sci. & Technol., Tianjin Univ., Tianjin, China
– sequence: 2
  surname: Zhiyong Feng
  fullname: Zhiyong Feng
  email: zyfeng@tju.edu.cn
  organization: Sch. of Comput. Sci. & Technol., Tianjin Univ., Tianjin, China
– sequence: 3
  surname: Chao Xu
  fullname: Chao Xu
  email: xuchao@tju.edu.cn
  organization: Sch. of Comput. Software, Tianjin Univ., Tianjin, China
BookMark eNotj8tKw0AUQEdQUGu-QJD8QOLcec-yBB-Flpa2rss8ru1AkpEkIP17wXZ1zurAeSS3fe6RkBegNQC1r7vVfLtv1qtNzSiIWlPBjaI3pLDagNDWSg0U7kkxjslTprQSSsgHojan85hym48puLbybsRYYpenlPtywJCPffr33zSdysV2V3Y5YvtE7r5dO2Jx5Yx8vb_tm89quf5YNPNllUDRqfJMGhajccqH4AMV1mjtmJSMc6qjAESPwlvJFVitJHobvQCQ2impReAz8nzpJkQ8_Aypc8P5cL3jf8vDR9E
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SMARTCOMP.2014.7043860
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479957101
1479957119
1479957100
9781479957118
EndPage 215
ExternalDocumentID 7043860
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i160t-b2582dd8a6bccbc049877a25523307d41eebe4b953619765eb9db41157a6574c3
IEDL.DBID RIE
IngestDate Wed Dec 20 05:18:58 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i160t-b2582dd8a6bccbc049877a25523307d41eebe4b953619765eb9db41157a6574c3
PageCount 8
ParticipantIDs ieee_primary_7043860
PublicationCentury 2000
PublicationDate 2014-Nov.
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-Nov.
PublicationDecade 2010
PublicationTitle 2014 International Conference on Smart Computing
PublicationTitleAbbrev SMARTCOMP
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764645
Score 1.5909736
Snippet A major challenge in physiology-based emotion recognition is to establish an effective emotion recognizer for multi-users in the user-independent scenario. The...
SourceID ieee
SourceType Publisher
StartPage 208
SubjectTerms Data models
Educational institutions
Electrocardiography
Emotion recognition
Feature extraction
Physiology
Predictive models
Title Physiological-based emotion recognition with IRS model
URI https://ieeexplore.ieee.org/document/7043860
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1qT55UWvGbHDy6aZPsbjbnYqlCtFgLvZX9CoiQiqSX_npnkjSiePC2hITNZnfzZvbNmwG4RURPhRaWKV3EjItMMxMR4Wi5KgqtTCpJKJw_ydmSP67Eqgd3nRbGe18Hn_mQmjWX7zZ2S0dlo5RoK4kO-gE6bo1Wa792sEtJJF0rAo7G2WiRo0k4ec7nFMDFw_bhH1VUahCZHkG-776JHXkPt5UJ7e5XZsb_vt8xDL_lesG8A6IT6PlyALKO7dz_2hihlQt8U7Qn6MKGsE0nscHDyyKoi-IMYTm9f53MWFskgb1FclwxEwsVO6e0NNYaiwa_SlONjkKc4PZ1PPI4TdwQSxuh6SG8yZzhlGJHS5Fym5xCv9yU_gwCIxIrOd4sdMxdgZYMuscZN4lVhUfL5BwGNOb1R5MHY90O9-Lvy5dwSN-90e1dQb_63PprBPDK3NQz9wW2Jpqq
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1KPehJpRW_zcGjmzbJ7mZzLpZWm1psC72F_QqI0BZJL_56Z5M0onjwtoSE7DKbvDc782YA7hHRYyaZJkLmIaEskUQFLuCoqchzKVTMnVA4nfLRkj6t2KoFD40WxlpbJp9Z3w3LWL7Z6J07KuvFLmzF0UE_QNxnQaXW2u8efCl3YbpaBhz0k948RVI4eElnLoWL-vXjP_qolDAyPIZ0P4Eqe-Td3xXK15-_ajP-d4Yn0P0W7HmzBopOoWXXHeBlduf-50YcXhnPVm17vCZxCMfuLNYbv869si1OF5bDx8VgROo2CeQt4P2CqJCJ0BghudJaaaT8Io4lugphhB-woYFFQ1Hl4rQBkg9mVWIUdUV2JGcx1dEZtNebtT0HT7FIc4o3MxlSkyOXQQc5oSrSIrfITS6g49acbatKGFm93Mu_L9_B4WiRTrLJePp8BUfOBpWK7xraxcfO3iCcF-q2tOIX_Did8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+International+Conference+on+Smart+Computing&rft.atitle=Physiological-based+emotion+recognition+with+IRS+model&rft.au=Chao+Li&rft.au=Zhiyong+Feng&rft.au=Chao+Xu&rft.date=2014-11-01&rft.pub=IEEE&rft.spage=208&rft.epage=215&rft_id=info:doi/10.1109%2FSMARTCOMP.2014.7043860&rft.externalDocID=7043860