One-dimensional convolutional neural networks for Android malware detection

In recent years, malware aims at Android OS has been increasing due to its rapid popularization. Several studies have been conducted for automated malware detection with machine learning approach and reported promising performance. However, they require a large amount of computation when running on...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA) pp. 99 - 102
Main Authors Hasegawa, Chihiro, Iyatomi, Hitoshi
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, malware aims at Android OS has been increasing due to its rapid popularization. Several studies have been conducted for automated malware detection with machine learning approach and reported promising performance. However, they require a large amount of computation when running on the client; typically mobile phone and/or similar devices. Thus, problems remain in terms of practicality. In this paper, we propose an accurate and light-weight Android malware detection method. Our method treats very limited part of raw APK (Android application package) file of the target as a short string and analyzes it with one-dimensional convolutional neural network (1-D CNN). We used two different datasets each consisting of 5,000 malwares and 2,000 goodwares. We confirmed our method using only the last 512-1K bytes of APK file achieved 95.40-97.04% in accuracy discriminating their malignancy under the 10-fold cross-validation strategy.
AbstractList In recent years, malware aims at Android OS has been increasing due to its rapid popularization. Several studies have been conducted for automated malware detection with machine learning approach and reported promising performance. However, they require a large amount of computation when running on the client; typically mobile phone and/or similar devices. Thus, problems remain in terms of practicality. In this paper, we propose an accurate and light-weight Android malware detection method. Our method treats very limited part of raw APK (Android application package) file of the target as a short string and analyzes it with one-dimensional convolutional neural network (1-D CNN). We used two different datasets each consisting of 5,000 malwares and 2,000 goodwares. We confirmed our method using only the last 512-1K bytes of APK file achieved 95.40-97.04% in accuracy discriminating their malignancy under the 10-fold cross-validation strategy.
Author Iyatomi, Hitoshi
Hasegawa, Chihiro
Author_xml – sequence: 1
  givenname: Chihiro
  surname: Hasegawa
  fullname: Hasegawa, Chihiro
  organization: Applied Informatics, Faculty of Science and Engineering, Hosei University, Japan
– sequence: 2
  givenname: Hitoshi
  surname: Iyatomi
  fullname: Iyatomi, Hitoshi
  organization: Applied Informatics, Faculty of Science and Engineering, Hosei University, Japan
BookMark eNotj9lKAzEYhSPohdY-gHiTF5gxW7NcDoNLsVBBvS5Z_kBwJpHM1OLbu7RXH-fwceBcofNcMiB0Q0lLKTF3_etL1zJCdau51NLwM7Q0StMV15JwrfUlet5maEIaIU-pZDtgX_JXGfbzMWXY13_Mh1I_JhxLxV0OtaSARzscbAUcYAb_51-ji2iHCZYnLtD7w_1b_9Rsto_rvts0ia7k3ETnnQbneLCSO-WcYUJacP63EAGIUUqB4oxZGYOzEAPRIDyYyIRRwvMFuj3uJgDYfdY02vq9O13kP-cqTak
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CSPA.2018.8368693
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538603888
1538603896
9781538603895
1538603888
EndPage 102
ExternalDocumentID 8368693
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i156t-fbcb8ebb3da63b7bb9246aebc3da4de09777e7322a6fdbaefd08e4ce9f24974c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:37 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-fbcb8ebb3da63b7bb9246aebc3da4de09777e7322a6fdbaefd08e4ce9f24974c3
PageCount 4
ParticipantIDs ieee_primary_8368693
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationTitle 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA)
PublicationTitleAbbrev CSPA
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.876521
Snippet In recent years, malware aims at Android OS has been increasing due to its rapid popularization. Several studies have been conducted for automated malware...
SourceID ieee
SourceType Publisher
StartPage 99
SubjectTerms 1D convolutional neural network
Androids
Convolution
Convolutional neural networks
Humanoid robots
Machine learning
Malware
malware identification
Smart phones
Title One-dimensional convolutional neural networks for Android malware detection
URI https://ieeexplore.ieee.org/document/8368693
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL20XblSacU3Wbg002mTZjJLKZaiVAta6K7kcQNFnUqdIvj1JpmxorhwlQchCXlwc5JzTwAueMadHcT7L9an3KZI81RzygfK20-H0ojgnDy5E-MZv5kP5g243PrCIGIkn2ESovEt367MJlyVdSUTUuSsCU0P3Cpfrfqhspfm3eHD9CpwtWRSl_vxYUq0F6NdmHy1VNFEnpJNqRPz8UuE8b9d2YPOt2cemW5tzj40sGjD7X2B1AaZ_kpigwQqeb2kfCpIVsYgEr7fiD-mksBjXC0teVHP72qNxGIZOVlFB2aj68fhmNafJNClh14lddpoiVozqwTTmdYeUAmF2vgMbjH157sMM79tlXBWK3Q2lcgN5s4Dr4wbdgCtYlXgIZCAtXLWE4jSg0Td85ViX-V9p1BmUrAjaIeBWLxWOhiLegyO_84-gZ0wGRVf6xRa5XqDZ96Al_o8ztwnfref-Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP2Y86AnlU38bQ8ebdcuaZoeZTim--HADXYbSfMFhtrJ7BD8603SOlE8eEoTShKSlpeXvO8F4IomVKvY7X-Rtk9ViH4aSurTWBj81MgzZoOThyPWm9L7WTyrwfUmFgYRnfgMA_vozvLVMlvbrbIWJ4yzlGzBtsH9OCqjtaqjyihMW53H8Y1Va_GgevPHlSkOMbp7MPxqqxSKPAXrQgbZxy8bxv92Zh-a37F53niDOgdQw7wB_YccfWWN-kuTDc-KyauPyuSsaaVLnOT7zTMLVc8qGZcL5b2I53exQk9h4VRZeROm3dtJp-dX1yT4C0O-Cl_LTHKUkijBiEykNJSKCZSZKaAKQ7PCSzAxP65gWkmBWoUcaYapNtQroRk5hHq-zPEIPMu2UhIxRG5oooxMpdgWaVsL5Aln5BgadiDmr6UTxrwag5O_iy9hpzcZDuaDu1H_FHbtxJTqrTOoF6s1nhs4L-SFm8VPA5CjQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+14th+International+Colloquium+on+Signal+Processing+%26+Its+Applications+%28CSPA%29&rft.atitle=One-dimensional+convolutional+neural+networks+for+Android+malware+detection&rft.au=Hasegawa%2C+Chihiro&rft.au=Iyatomi%2C+Hitoshi&rft.date=2018-03-01&rft.pub=IEEE&rft.spage=99&rft.epage=102&rft_id=info:doi/10.1109%2FCSPA.2018.8368693&rft.externalDocID=8368693