Collecting complex activity datasets in highly rich networked sensor environments

We deployed 72 sensors of 10 modalities in 15 wireless and wired networked sensor systems in the environment, in objects, and on the body to create a sensor-rich environment for the machine recognition of human activities. We acquired data from 12 subjects performing morning activities, yielding ove...

Full description

Saved in:
Bibliographic Details
Published in2010 Seventh International Conference on Networked Sensing Systems pp. 233 - 240
Main Authors Roggen, D, Calatroni, A, Rossi, M, Holleczek, T, Forster, K, Troster, G, Lukowicz, P, Bannach, D, Pirkl, G, Ferscha, A, Doppler, J, Holzmann, C, Kurz, M, Holl, G, Chavarriaga, R, Sagha, H, Bayati, H, Creatura, M, del R Millan, Jose
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.06.2010
Subjects
Online AccessGet full text
ISBN9781424479115
1424479118
DOI10.1109/INSS.2010.5573462

Cover

Abstract We deployed 72 sensors of 10 modalities in 15 wireless and wired networked sensor systems in the environment, in objects, and on the body to create a sensor-rich environment for the machine recognition of human activities. We acquired data from 12 subjects performing morning activities, yielding over 25 hours of sensor data. We report the number of activity occurrences observed during post-processing, and estimate that over 13000 and 14000 object and environment interactions occurred. We describe the networked sensor setup and the methodology for data acquisition, synchronization and curation. We report on the challenges and outline lessons learned and best practice for similar large scale deployments of heterogeneous networked sensor systems. We evaluate data acquisition quality for on-body and object integrated wireless sensors; there is less than 2.5% packet loss after tuning. We outline our use of the dataset to develop new sensor network self-organization principles and machine learning techniques for activity recognition in opportunistic sensor configurations. Eventually this dataset will be made public.
AbstractList We deployed 72 sensors of 10 modalities in 15 wireless and wired networked sensor systems in the environment, in objects, and on the body to create a sensor-rich environment for the machine recognition of human activities. We acquired data from 12 subjects performing morning activities, yielding over 25 hours of sensor data. We report the number of activity occurrences observed during post-processing, and estimate that over 13000 and 14000 object and environment interactions occurred. We describe the networked sensor setup and the methodology for data acquisition, synchronization and curation. We report on the challenges and outline lessons learned and best practice for similar large scale deployments of heterogeneous networked sensor systems. We evaluate data acquisition quality for on-body and object integrated wireless sensors; there is less than 2.5% packet loss after tuning. We outline our use of the dataset to develop new sensor network self-organization principles and machine learning techniques for activity recognition in opportunistic sensor configurations. Eventually this dataset will be made public.
Author Holzmann, C
Holl, G
Troster, G
del R Millan, Jose
Chavarriaga, R
Sagha, H
Forster, K
Holleczek, T
Ferscha, A
Creatura, M
Calatroni, A
Doppler, J
Pirkl, G
Lukowicz, P
Bayati, H
Rossi, M
Bannach, D
Roggen, D
Kurz, M
Author_xml – sequence: 1
  givenname: D
  surname: Roggen
  fullname: Roggen, D
  organization: Wearable Comput. Lab., ETH Zurich, Zurich, Switzerland
– sequence: 2
  givenname: A
  surname: Calatroni
  fullname: Calatroni, A
  organization: Wearable Comput. Lab., ETH Zurich, Zurich, Switzerland
– sequence: 3
  givenname: M
  surname: Rossi
  fullname: Rossi, M
  organization: Wearable Comput. Lab., ETH Zurich, Zurich, Switzerland
– sequence: 4
  givenname: T
  surname: Holleczek
  fullname: Holleczek, T
  organization: Wearable Comput. Lab., ETH Zurich, Zurich, Switzerland
– sequence: 5
  givenname: K
  surname: Forster
  fullname: Forster, K
  organization: Wearable Comput. Lab., ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: G
  surname: Troster
  fullname: Troster, G
  organization: Wearable Comput. Lab., ETH Zurich, Zurich, Switzerland
– sequence: 7
  givenname: P
  surname: Lukowicz
  fullname: Lukowicz, P
  organization: Embedded Syst. Lab., Univ. of Passau, Passau, Germany
– sequence: 8
  givenname: D
  surname: Bannach
  fullname: Bannach, D
  organization: Embedded Syst. Lab., Univ. of Passau, Passau, Germany
– sequence: 9
  givenname: G
  surname: Pirkl
  fullname: Pirkl, G
  organization: Embedded Syst. Lab., Univ. of Passau, Passau, Germany
– sequence: 10
  givenname: A
  surname: Ferscha
  fullname: Ferscha, A
  organization: Inst. for Pervasive Comput., Johannes Kepler Univ. Linz, Linz, Austria
– sequence: 11
  givenname: J
  surname: Doppler
  fullname: Doppler, J
  organization: Inst. for Pervasive Comput., Johannes Kepler Univ. Linz, Linz, Austria
– sequence: 12
  givenname: C
  surname: Holzmann
  fullname: Holzmann, C
  organization: Inst. for Pervasive Comput., Johannes Kepler Univ. Linz, Linz, Austria
– sequence: 13
  givenname: M
  surname: Kurz
  fullname: Kurz, M
  organization: Inst. for Pervasive Comput., Johannes Kepler Univ. Linz, Linz, Austria
– sequence: 14
  givenname: G
  surname: Holl
  fullname: Holl, G
  organization: Inst. for Pervasive Comput., Johannes Kepler Univ. Linz, Linz, Austria
– sequence: 15
  givenname: R
  surname: Chavarriaga
  fullname: Chavarriaga, R
  organization: Dept. of Non-Invasive Brain-Machine Interface, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
– sequence: 16
  givenname: H
  surname: Sagha
  fullname: Sagha, H
  organization: Dept. of Non-Invasive Brain-Machine Interface, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
– sequence: 17
  givenname: H
  surname: Bayati
  fullname: Bayati, H
  organization: Dept. of Non-Invasive Brain-Machine Interface, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
– sequence: 18
  givenname: M
  surname: Creatura
  fullname: Creatura, M
  organization: Dept. of Inf. Syst. & Telematics, Univ. of Genova, Genoa, Italy
– sequence: 19
  givenname: Jose
  surname: del R Millan
  fullname: del R Millan, Jose
  organization: Dept. of Inf. Syst. & Telematics, Univ. of Genova, Genoa, Italy
BookMark eNo10MtKAzEYBeCICto6DyBu8gJTc53LUgYvhaJIFdyVJPOnE50mZRKq8_YOWM_m8G3O4szQmQ8eELqmZEEpqW-Xz-v1gpGJUpZcFOwEzahgQpQ1JR-nKKvL6t9UXqAsxk8yRUhGOL9Er03oezDJ-S02Ybfv4QeriQeXRtyqpCKkiJ3Hndt2_YgHZzrsIX2H4QtaHMHHMGDwBzcEvwOf4hU6t6qPkB17jt4f7t-ap3z18rhs7la5o7JIORQFqW3FqKiMEVRprmnFlJbCWsJLY6sSrFCmqjWzsjWSFkUtraaq1MaA4XN087frAGCzH9xODePm-AL_BdfRVKw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/INSS.2010.5573462
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 142447910X
9781424479108
EndPage 240
ExternalDocumentID 5573462
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i156t-e6609f82148cc41ab3b182ab54ff037cf87ef4ac89b2f5dc516695fb1a7bccec3
IEDL.DBID RIE
ISBN 9781424479115
1424479118
IngestDate Wed Aug 27 02:58:09 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-e6609f82148cc41ab3b182ab54ff037cf87ef4ac89b2f5dc516695fb1a7bccec3
PageCount 8
ParticipantIDs ieee_primary_5573462
PublicationCentury 2000
PublicationDate 2010-06
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06
PublicationDecade 2010
PublicationTitle 2010 Seventh International Conference on Networked Sensing Systems
PublicationTitleAbbrev INSS
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452033
Score 2.0208588
Snippet We deployed 72 sensors of 10 modalities in 15 wireless and wired networked sensor systems in the environment, in objects, and on the body to create a...
SourceID ieee
SourceType Publisher
StartPage 233
SubjectTerms Activity recognition dataset
Artificial intelligence
Bismuth
Bluetooth
Electrocardiography
Human behavior recognition
Humidity
Lead
Machine learning
Microphones
Pattern classification
Ubiquitous computing
Wearable computing
Title Collecting complex activity datasets in highly rich networked sensor environments
URI https://ieeexplore.ieee.org/document/5573462
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJyZALeItD4ykjWM7cWZEVSEVgaBStyq-nEUFSlGbSoVfjy9Jy0MMbHGGyK_4fHff9x1jl8LmmclTEzglokDZJA0McWUMKkk3cDSKuMOju3g4VrcTPWmxqy0XBhEr8Bn26LHK5edzWFGorK91IhUduDt-m9VcrW08haTBQyk33K3E_8RmI-nUtHWT1RRh2veu8WMN7Go--qO6SmVcBntstOlWjSl56a1K24OPX4qN_-33Put-0fj4_dZAHbAWFh32UIUKgNDOvMKT45oTuYFqSHDCiy6xXPJZwUnI-PWd-3PymRc1WBxzvvRu73zBv_Pjumw8uHm6HgZNXYVg5r21MsA4DlNnIu8JASiRWWm9l5FZrZwLZQLOJOhUBia1kdM5aBHHqXZWZIkFQJCHrF3MCzxi3A8gjHJ_CXBSKQBhIZeKFPaN8FvAxMesQ9MxfaulM6bNTJz8_fqU7dbJeQpynLF2uVjhubf5pb2oFvsTKzqptw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHvSkBozf9uDRwbq2W3c2ElQgGiHhRtbubSSaQWAk6q-37zbwIx68rTssbbf1_Xqe5yXkkuk0UWmsPCtY4AkdxZ5CrowCwdEDByWQO9wfhN2RuBvLcY1cbbgwAFCAz6CFl0UtP52ZFabK2lJGXOCBu-XsvpAlW2uTUUFxcJ_zNXsrcr-xWos6VWNZ1TWZH7ddcPxUQruqx_7or1KYl84u6a8nVqJKXlqrXLfMxy_Nxv_OfI80v4h89GFjovZJDbIGeSySBQbxzrRAlMMbRXoDdpGgiBhdQr6k04yilPHrO3Un5TPNSrg4pHTpAt_Zgn5nyDXJqHMzvO56VWcFb-ritdyDMPRjqwIXCxkjWKK5dnFGoqWw1ueRsSoCKxKjYh1YmRrJwjCWVrMk0saA4Qekns0yOCTULcAPUucGWC6EMUyblAvU2FfMfQQqPCIN3I7JvBTPmFQ7cfz37Quy3R32e5Pe7eD-hOyUpXpMeZySer5YwZnzAHJ9Xrz4Tz-9rQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Seventh+International+Conference+on+Networked+Sensing+Systems&rft.atitle=Collecting+complex+activity+datasets+in+highly+rich+networked+sensor+environments&rft.au=Roggen%2C+D&rft.au=Calatroni%2C+A&rft.au=Rossi%2C+M&rft.au=Holleczek%2C+T&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424479115&rft.spage=233&rft.epage=240&rft_id=info:doi/10.1109%2FINSS.2010.5573462&rft.externalDocID=5573462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424479115/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424479115/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424479115/sc.gif&client=summon&freeimage=true