Matching Local Self-Similarities across Images and Videos
We present an approach for measuring similarity between visual entities (images or videos) based on matching internal self-similarities. What is correlated across images (or across video sequences) is the internal layout of local self-similarities (up to some distortions), even though the patterns g...
Saved in:
Published in | 2007 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English Japanese |
Published |
IEEE
01.06.2007
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424411795 1424411793 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2007.383198 |
Cover
Abstract | We present an approach for measuring similarity between visual entities (images or videos) based on matching internal self-similarities. What is correlated across images (or across video sequences) is the internal layout of local self-similarities (up to some distortions), even though the patterns generating those local self-similarities are quite different in each of the images/videos. These internal self-similarities are efficiently captured by a compact local "self-similarity descriptor"', measured densely throughout the image/video, at multiple scales, while accounting for local and global geometric distortions. This gives rise to matching capabilities of complex visual data, including detection of objects in real cluttered images using only rough hand-sketches, handling textured objects with no clear boundaries, and detecting complex actions in cluttered video data with no prior learning. We compare our measure to commonly used image-based and video-based similarity measures, and demonstrate its applicability to object detection, retrieval, and action detection. |
---|---|
AbstractList | We present an approach for measuring similarity between visual entities (images or videos) based on matching internal self-similarities. What is correlated across images (or across video sequences) is the internal layout of local self-similarities (up to some distortions), even though the patterns generating those local self-similarities are quite different in each of the images/videos. These internal self-similarities are efficiently captured by a compact local "self-similarity descriptor"', measured densely throughout the image/video, at multiple scales, while accounting for local and global geometric distortions. This gives rise to matching capabilities of complex visual data, including detection of objects in real cluttered images using only rough hand-sketches, handling textured objects with no clear boundaries, and detecting complex actions in cluttered video data with no prior learning. We compare our measure to commonly used image-based and video-based similarity measures, and demonstrate its applicability to object detection, retrieval, and action detection. |
Author | Shechtman, E. Irani, M. |
Author_xml | – sequence: 1 givenname: E. surname: Shechtman fullname: Shechtman, E. organization: Weizmann Inst. of Sci., Rehovot – sequence: 2 givenname: M. surname: Irani fullname: Irani, M. organization: Weizmann Inst. of Sci., Rehovot |
BookMark | eNpNjk1Lw0AYhFetYFtzF7zkD6S-72724z1KsFqIKFZ7LWuyW1fyIdlc_PdG7MG5DMPDDLNgs67vHGNXCCtEoJti9_yy4gB6JYxAMidsgTnPc0QD-pTNEZTIFCGdsYS0OTJNcvaPXbAkxk-YZKaaNHNGj3asPkJ3SMu-sk26dY3PtqENjR3CGFxMbTX0Maab1h5-U1enu1C7Pl6yc2-b6JKjL9nb-u61eMjKp_tNcVtmAaUaM4fErfTKCyEqxQnBG1Mrolr4dw2u9lwhEXgU3mlvhZFc1pWWgErAdHzJrv92g3Nu_zWE1g7f-5xr4FyIH-ugS9U |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2007.383198 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 1424411807 9781424411801 |
EISSN | 1063-6919 |
EndPage | 8 |
ExternalDocumentID | 4270223 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i156t-e192a5f6f333c62910f88d699d3fb70edf261990f13fe7fa38525dc7501630063 |
IEDL.DBID | RIE |
ISBN | 9781424411795 1424411793 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 01:48:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i156t-e192a5f6f333c62910f88d699d3fb70edf261990f13fe7fa38525dc7501630063 |
PageCount | 8 |
ParticipantIDs | ieee_primary_4270223 |
PublicationCentury | 2000 |
PublicationDate | 2007-06 |
PublicationDateYYYYMMDD | 2007-06-01 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-06 |
PublicationDecade | 2000 |
PublicationTitle | 2007 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2007 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000818058 ssj0023720 ssj0003211698 |
Score | 2.310121 |
Snippet | We present an approach for measuring similarity between visual entities (images or videos) based on matching internal self-similarities. What is correlated... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Computer science Distortion measurement Filters Heart Image edge detection Image recognition Image retrieval Object detection Pixel Video sequences |
Title | Matching Local Self-Similarities across Images and Videos |
URI | https://ieeexplore.ieee.org/document/4270223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhxG9uJE88VVUEUVZRW3arEDymCpoimC7-ec14IxMDm85RY57v7fHffIXQjuB_HYPlJHEeagIbAKuSaUMGsZTQBBO2A4vRJTBb-wypYtdBt0wtjjCmKz8zALYtcvt6qvXsqG_queYrxNmqDmpW9Ws17iqNmqzN8TuaAbIRsMgrMTWMpMp-CEyGprJu8HCUar7mfKjmo85meHI6Ws-eS6RCwHCD0H1NYCic07qJp_fll7cnrYJ8nA_X5i9nxv_93iPrf7X541jiyI9Qy2THqVvEprm7_DrbqERD1Xg_JKZhy94iFH51TxHPzZsk83aQAmAuuVhwXfhjfb8BwgZRpvEy12e76aDG-exlNSDWNgaSA8XJiIBaMAyss51wJBmGGjSItpNTcJqFntHVgTHqWcmtCG_MoYIFWEJFQR-sl-AnqZNvMnCIcM6UkAB24_8wPFYBMlWgfQjWwLlTR4Az13OGs30vCjXV1Lud_b1-gg7qIz6OXqJN_7M0VRAp5cl2oyBcM47EB |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbRwnTjxXoBaaqqIPdasSP6QImiKaLvx6znkhEAObz5st--6-e3yH0B2jbhSB5reiKJAWvBBY-VRahDlaOyQGBG2AYjhmg7n7tPSWDXRf98IopfLiM9U1yzyXLzdiZ0JlPdc0Tzl0D-2D3Xe9olurjqgYcrYqx2dkCtiG8Tqn4Jh5LHnuk1GLccKrNi9DikYr9qdS9qqMps17_cXkpeA6BDQHGP3HHJbcDD22UFgdoKg-ee3usrgrPn9xO_73hEeo893whye1KTtGDZWeoFbpoeLy_29hqxoCUe21EQ9BmZswFh4Zs4in6k1b02SdAGTO2VpxlFtiPFyD6gIplXiRSLXZdtD88WHWH1jlPAYrAZSXWQq8wcjTTFNKBXPA0dBBIBnnkurYt5XUBo5xWxOqla8jGniOJwX4JMQQezF6iprpJlVnCEeOEBygDmgAx_UFwEwRSxecNdAvRBDvHLXN5azeC8qNVXkvF39v36KDwSwcrUbD8fMlOqxK-mxyhZrZx05dg9-QxTf5c_kCjZq0Tg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Matching+Local+Self-Similarities+across+Images+and+Videos&rft.au=Shechtman%2C+E.&rft.au=Irani%2C+M.&rft.date=2007-06-01&rft.pub=IEEE&rft.isbn=9781424411795&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2007.383198&rft.externalDocID=4270223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |