Matching Local Self-Similarities across Images and Videos

We present an approach for measuring similarity between visual entities (images or videos) based on matching internal self-similarities. What is correlated across images (or across video sequences) is the internal layout of local self-similarities (up to some distortions), even though the patterns g...

Full description

Saved in:
Bibliographic Details
Published in2007 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8
Main Authors Shechtman, E., Irani, M.
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.06.2007
Subjects
Online AccessGet full text
ISBN9781424411795
1424411793
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2007.383198

Cover

Abstract We present an approach for measuring similarity between visual entities (images or videos) based on matching internal self-similarities. What is correlated across images (or across video sequences) is the internal layout of local self-similarities (up to some distortions), even though the patterns generating those local self-similarities are quite different in each of the images/videos. These internal self-similarities are efficiently captured by a compact local "self-similarity descriptor"', measured densely throughout the image/video, at multiple scales, while accounting for local and global geometric distortions. This gives rise to matching capabilities of complex visual data, including detection of objects in real cluttered images using only rough hand-sketches, handling textured objects with no clear boundaries, and detecting complex actions in cluttered video data with no prior learning. We compare our measure to commonly used image-based and video-based similarity measures, and demonstrate its applicability to object detection, retrieval, and action detection.
AbstractList We present an approach for measuring similarity between visual entities (images or videos) based on matching internal self-similarities. What is correlated across images (or across video sequences) is the internal layout of local self-similarities (up to some distortions), even though the patterns generating those local self-similarities are quite different in each of the images/videos. These internal self-similarities are efficiently captured by a compact local "self-similarity descriptor"', measured densely throughout the image/video, at multiple scales, while accounting for local and global geometric distortions. This gives rise to matching capabilities of complex visual data, including detection of objects in real cluttered images using only rough hand-sketches, handling textured objects with no clear boundaries, and detecting complex actions in cluttered video data with no prior learning. We compare our measure to commonly used image-based and video-based similarity measures, and demonstrate its applicability to object detection, retrieval, and action detection.
Author Shechtman, E.
Irani, M.
Author_xml – sequence: 1
  givenname: E.
  surname: Shechtman
  fullname: Shechtman, E.
  organization: Weizmann Inst. of Sci., Rehovot
– sequence: 2
  givenname: M.
  surname: Irani
  fullname: Irani, M.
  organization: Weizmann Inst. of Sci., Rehovot
BookMark eNpNjk1Lw0AYhFetYFtzF7zkD6S-72724z1KsFqIKFZ7LWuyW1fyIdlc_PdG7MG5DMPDDLNgs67vHGNXCCtEoJti9_yy4gB6JYxAMidsgTnPc0QD-pTNEZTIFCGdsYS0OTJNcvaPXbAkxk-YZKaaNHNGj3asPkJ3SMu-sk26dY3PtqENjR3CGFxMbTX0Maab1h5-U1enu1C7Pl6yc2-b6JKjL9nb-u61eMjKp_tNcVtmAaUaM4fErfTKCyEqxQnBG1Mrolr4dw2u9lwhEXgU3mlvhZFc1pWWgErAdHzJrv92g3Nu_zWE1g7f-5xr4FyIH-ugS9U
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2007.383198
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1424411807
9781424411801
EISSN 1063-6919
EndPage 8
ExternalDocumentID 4270223
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i156t-e192a5f6f333c62910f88d699d3fb70edf261990f13fe7fa38525dc7501630063
IEDL.DBID RIE
ISBN 9781424411795
1424411793
ISSN 1063-6919
IngestDate Wed Aug 27 01:48:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-e192a5f6f333c62910f88d699d3fb70edf261990f13fe7fa38525dc7501630063
PageCount 8
ParticipantIDs ieee_primary_4270223
PublicationCentury 2000
PublicationDate 2007-06
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06
PublicationDecade 2000
PublicationTitle 2007 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000818058
ssj0023720
ssj0003211698
Score 2.310121
Snippet We present an approach for measuring similarity between visual entities (images or videos) based on matching internal self-similarities. What is correlated...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computer science
Distortion measurement
Filters
Heart
Image edge detection
Image recognition
Image retrieval
Object detection
Pixel
Video sequences
Title Matching Local Self-Similarities across Images and Videos
URI https://ieeexplore.ieee.org/document/4270223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhxG9uJE88VVUEUVZRW3arEDymCpoimC7-ec14IxMDm85RY57v7fHffIXQjuB_HYPlJHEeagIbAKuSaUMGsZTQBBO2A4vRJTBb-wypYtdBt0wtjjCmKz8zALYtcvt6qvXsqG_queYrxNmqDmpW9Ws17iqNmqzN8TuaAbIRsMgrMTWMpMp-CEyGprJu8HCUar7mfKjmo85meHI6Ws-eS6RCwHCD0H1NYCic07qJp_fll7cnrYJ8nA_X5i9nxv_93iPrf7X541jiyI9Qy2THqVvEprm7_DrbqERD1Xg_JKZhy94iFH51TxHPzZsk83aQAmAuuVhwXfhjfb8BwgZRpvEy12e76aDG-exlNSDWNgaSA8XJiIBaMAyss51wJBmGGjSItpNTcJqFntHVgTHqWcmtCG_MoYIFWEJFQR-sl-AnqZNvMnCIcM6UkAB24_8wPFYBMlWgfQjWwLlTR4Az13OGs30vCjXV1Lud_b1-gg7qIz6OXqJN_7M0VRAp5cl2oyBcM47EB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbRwnTjxXoBaaqqIPdasSP6QImiKaLvx6znkhEAObz5st--6-e3yH0B2jbhSB5reiKJAWvBBY-VRahDlaOyQGBG2AYjhmg7n7tPSWDXRf98IopfLiM9U1yzyXLzdiZ0JlPdc0Tzl0D-2D3Xe9olurjqgYcrYqx2dkCtiG8Tqn4Jh5LHnuk1GLccKrNi9DikYr9qdS9qqMps17_cXkpeA6BDQHGP3HHJbcDD22UFgdoKg-ee3usrgrPn9xO_73hEeo893whye1KTtGDZWeoFbpoeLy_29hqxoCUe21EQ9BmZswFh4Zs4in6k1b02SdAGTO2VpxlFtiPFyD6gIplXiRSLXZdtD88WHWH1jlPAYrAZSXWQq8wcjTTFNKBXPA0dBBIBnnkurYt5XUBo5xWxOqla8jGniOJwX4JMQQezF6iprpJlVnCEeOEBygDmgAx_UFwEwRSxecNdAvRBDvHLXN5azeC8qNVXkvF39v36KDwSwcrUbD8fMlOqxK-mxyhZrZx05dg9-QxTf5c_kCjZq0Tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Matching+Local+Self-Similarities+across+Images+and+Videos&rft.au=Shechtman%2C+E.&rft.au=Irani%2C+M.&rft.date=2007-06-01&rft.pub=IEEE&rft.isbn=9781424411795&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2007.383198&rft.externalDocID=4270223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon