Holistic Feature Extraction for Automatic Image Annotation

Automating the annotation process of digital images is a crucial step towards efficient and effective management of this increasingly high volume of content. It is, nevertheless, an extremely challenging task for the research community. One of the main bottle necks is the lack of integrity and diver...

Full description

Saved in:
Bibliographic Details
Published in2011 fifth FTRA International Conference on Multimedia and Ubiquitous Engineering : 28-30 June 2011 pp. 59 - 66
Main Authors Sarin, S., Fahrmair, M., Wagner, M., Kameyama, W.
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.06.2011
Subjects
Online AccessGet full text
ISBN1457712288
9781457712289
DOI10.1109/MUE.2011.22

Cover

Abstract Automating the annotation process of digital images is a crucial step towards efficient and effective management of this increasingly high volume of content. It is, nevertheless, an extremely challenging task for the research community. One of the main bottle necks is the lack of integrity and diversity of features. We solve this problem by proposing to utilize 43 image features that cover the holistic content of the image from global to subject, background, and scene. In our approach, saliency regions and background are separated without prior knowledge. Each of them together with the whole image is treated independently for feature extraction. Extensive experiments were designed to show the efficiency and effectiveness of our approach. We chose two publicly available datasets manually annotated and with the diverse nature of images for our experiments, namely, the Corel5k and ESP Game datasets. They contain 5,000 images with 260 keywords and 20,770 images with 268 keywords, respectively. Through empirical experiments, it is confirmed that by using our features with the state-of-the-art technique, we achieve superior performance in many metrics, particularly in auto-annotation.
AbstractList Automating the annotation process of digital images is a crucial step towards efficient and effective management of this increasingly high volume of content. It is, nevertheless, an extremely challenging task for the research community. One of the main bottle necks is the lack of integrity and diversity of features. We solve this problem by proposing to utilize 43 image features that cover the holistic content of the image from global to subject, background, and scene. In our approach, saliency regions and background are separated without prior knowledge. Each of them together with the whole image is treated independently for feature extraction. Extensive experiments were designed to show the efficiency and effectiveness of our approach. We chose two publicly available datasets manually annotated and with the diverse nature of images for our experiments, namely, the Corel5k and ESP Game datasets. They contain 5,000 images with 260 keywords and 20,770 images with 268 keywords, respectively. Through empirical experiments, it is confirmed that by using our features with the state-of-the-art technique, we achieve superior performance in many metrics, particularly in auto-annotation.
Author Fahrmair, M.
Kameyama, W.
Wagner, M.
Sarin, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Sarin
  fullname: Sarin, S.
  email: sarin@docomolab-euro.com
  organization: Smart & Secure Services Res. Group, DOCOMO Euro-Labs., Munich, Germany
– sequence: 2
  givenname: M.
  surname: Fahrmair
  fullname: Fahrmair, M.
  email: fahrmair@docomolab-euro.com
  organization: Smart & Secure Services Res. Group, DOCOMO Euro-Labs., Munich, Germany
– sequence: 3
  givenname: M.
  surname: Wagner
  fullname: Wagner, M.
  email: wagner@docomolab-euro.com
  organization: Smart & Secure Services Res. Group, DOCOMO Euro-Labs., Munich, Germany
– sequence: 4
  givenname: W.
  surname: Kameyama
  fullname: Kameyama, W.
  email: wataru@waseda.jp
  organization: Grad. Sch. of Global Info. & Telecommun. Studies (GITS), Waseda Univ., Saitama, Japan
BookMark eNotjL1OwzAYRY0ACVoyMbLkBRL8-Tdmi6qUVipioXP14R9k1MQocSV4e1LBXc5wju6CXA1p8ITcA60BqHl82Xc1owA1YxekMLqhWhkphKb0kixASK2Bsaa5IcU0fVJKwSitQN2Sp006xilHW6495tPoy-47j2hzTEMZ0li2p5x6PAfbHj982Q5DynjWd-Q64HHyxT-XZL_u3labavf6vF21uyqCVLlCJ4R7b6QDaxXXQQXNldRoZ2u1dJw7FYQPaKjk86gFzaRC9MFZDJIvycPfb_TeH77G2OP4c5DGsDnkv1GJSSY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MUE.2011.22
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769544700
0769544703
EndPage 66
ExternalDocumentID 5992172
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i156t-ad44db85d1cc637f6f73657ac156c75d33d6f4efa90533330c17256aaefdcaf53
IEDL.DBID RIE
ISBN 1457712288
9781457712289
IngestDate Wed Aug 27 03:38:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-ad44db85d1cc637f6f73657ac156c75d33d6f4efa90533330c17256aaefdcaf53
PageCount 8
ParticipantIDs ieee_primary_5992172
PublicationCentury 2000
PublicationDate 2011-06
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06
PublicationDecade 2010
PublicationTitle 2011 fifth FTRA International Conference on Multimedia and Ubiquitous Engineering : 28-30 June 2011
PublicationTitleAbbrev mue
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001967616
Score 1.484526
Snippet Automating the annotation process of digital images is a crucial step towards efficient and effective management of this increasingly high volume of content....
SourceID ieee
SourceType Publisher
StartPage 59
SubjectTerms automatic image annotation
background
Feature extraction
Gabor filters
Games
holistic feature extraction
Humans
Image color analysis
Image segmentation
k nearest neighbors (KNN)
saliency regions
Training
Title Holistic Feature Extraction for Automatic Image Annotation
URI https://ieeexplore.ieee.org/document/5992172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGH7ZdvI0dRO_ycGj3dql-fI2ZGMKEw8Odhv5Kojaymhh-OtN0m4T8eCtbS4veZO-H8nzPAA31tXIOjZJlFiKoxRLG7ldpCPMtVaxFIoHnoL5E50t0sclWbbgdoeFsdaGy2d24B_DWb4pdOVbZUMihNdTakPbLbMaq7XvpwjqKnIasFuEsWQ04nxL6dS8iwafl8RiOF9Mav5Or5r7Q1clhJVpF-Zbg-rbJG-DqlQD_fWLq_G_Fh9Cfw_gQ8-70HQELZsfQ3er4ICaDd2Du1nxHpiakU8Fq7VFk025rrEOyKWzaFyVRSB1RQ8f7s-Dxnle1If3fVhMJy_3s6hRU4heXY1WOhekqVGcmERrillGM4YpYVK7Uc2IwdjQLLWZFB6e613oDCdUSpsZLTOCT6CTF7k9BSSwwiaNjc820kRzxRgz0hKVceFWpjiDnp-K1WdNmLFqZuH8788XcFA3an1r4xI65bqyVy7Sl-o6uPgbcn-l_Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD3pCBeO3PXh0wOjX6o0YyFBGPEDCjfRriVE3Q7bE-OttuyHGePC2bpc3fde-H-3zPADcGFsjq74Og9BQFGAkTGBXkQpQpJTsCy4jz1OQzGi8wA9LsmyA228sjDHGXz4zXffoz_J1rkrXKusRzp2e0g7YtXEfkwqtte2ocGprcurRW4SxcDCIog2pUz3mNUIv7PNeshhVDJ5ON_eHsooPLOMWSDYmVfdJXrplIbvq8xdb439tPgCdLYQPPn0Hp0PQMNkRaG00HGC9pNvgLs5fPVczdMlguTZw9FGsK7QDtAktHJZF7mld4eTN7j1wmGV5dXzfAYvxaH4fB7WeQvBsq7TCOgFjLSOiQ6UoYilNGaKECWW_KkY0Qpqm2KSCO4Cuc6I1nFAhTKqVSAk6Bs0sz8wJgBxJpHFfu3wDhyqSjDEtDJFpxO2_yU9B203F6r2izFjVs3D29-trsBfPk-lqOpk9noP9qm3rGh0XoFmsS3Np434hr7y7vwBYfKlK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+fifth+FTRA+International+Conference+on+Multimedia+and+Ubiquitous+Engineering+%3A+28-30+June+2011&rft.atitle=Holistic+Feature+Extraction+for+Automatic+Image+Annotation&rft.au=Sarin%2C+S.&rft.au=Fahrmair%2C+M.&rft.au=Wagner%2C+M.&rft.au=Kameyama%2C+W.&rft.date=2011-06-01&rft.pub=IEEE&rft.isbn=9781457712289&rft.spage=59&rft.epage=66&rft_id=info:doi/10.1109%2FMUE.2011.22&rft.externalDocID=5992172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457712289/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457712289/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457712289/sc.gif&client=summon&freeimage=true