A Study and Comparison of Human and Deep Learning Recognition Performance under Visual Distortions

Deep neural networks (DNNs) achieve excellent performance on standard classification tasks. However, under image quality distortions such as blur and noise, classification accuracy becomes poor. In this work, we compare the performance of DNNs with human subjects on distorted images. We show that, a...

Full description

Saved in:
Bibliographic Details
Published in2017 26th International Conference on Computer Communication and Networks (ICCCN) pp. 1 - 7
Main Authors Dodge, Samuel, Karam, Lina
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep neural networks (DNNs) achieve excellent performance on standard classification tasks. However, under image quality distortions such as blur and noise, classification accuracy becomes poor. In this work, we compare the performance of DNNs with human subjects on distorted images. We show that, although DNNs perform better than or on par with humans on good quality images, DNN performance is still much lower than human performance on distorted images. We additionally find that there is little correlation in errors between DNNs and human subjects. This could be an indication that the internal representation of images are different between DNNs and the human visual system. These comparisons with human performance could be used to guide future development of more robust DNNs.
AbstractList Deep neural networks (DNNs) achieve excellent performance on standard classification tasks. However, under image quality distortions such as blur and noise, classification accuracy becomes poor. In this work, we compare the performance of DNNs with human subjects on distorted images. We show that, although DNNs perform better than or on par with humans on good quality images, DNN performance is still much lower than human performance on distorted images. We additionally find that there is little correlation in errors between DNNs and human subjects. This could be an indication that the internal representation of images are different between DNNs and the human visual system. These comparisons with human performance could be used to guide future development of more robust DNNs.
Author Dodge, Samuel
Karam, Lina
Author_xml – sequence: 1
  givenname: Samuel
  surname: Dodge
  fullname: Dodge, Samuel
  email: sfdodge@asu.edu
– sequence: 2
  givenname: Lina
  surname: Karam
  fullname: Karam, Lina
  email: karam@asu.edu
BookMark eNotj8tOwzAURI0EC1r4Adj4B1J8HTu2l5ULtFIEiNe2cpKbylJjR06y6N8ToKsjjY5GMwtyGWJAQu6ArQCYedhZa19WnIFaaZZrUcgLsgDJDOPGgLwm1Zp-jFNzoi401Maud8kPMdDY0u3UufCXbxB7WqJLwYcDfcc6HoIf_ay9YWpjmr0a6RQaTPTbD5M70o0fxph-neGGXLXuOODtmUvy9fT4abdZ-fq8s-sy8yCLMdOF4UazWhgFMBOU4JUAXaBT3MzbjcgVU04brGspq1aCa1rOGinRiYLnS3L_3-sRcd8n37l02p9v5z-ZTlEs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCCN.2017.8038465
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509029915
9781509029914
EndPage 7
ExternalDocumentID 8038465
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i156t-8692980c4971180c1742b4186ea729384943707a89ecc55bf51adf20d55ea4623
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:59 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-8692980c4971180c1742b4186ea729384943707a89ecc55bf51adf20d55ea4623
PageCount 7
ParticipantIDs ieee_primary_8038465
PublicationCentury 2000
PublicationDate 2017-07
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07
PublicationDecade 2010
PublicationTitle 2017 26th International Conference on Computer Communication and Networks (ICCCN)
PublicationTitleAbbrev ICCCN
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2350385
Snippet Deep neural networks (DNNs) achieve excellent performance on standard classification tasks. However, under image quality distortions such as blur and noise,...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Distortion
Neural networks
Robustness
Testing
Training
Visual systems
Title A Study and Comparison of Human and Deep Learning Recognition Performance under Visual Distortions
URI https://ieeexplore.ieee.org/document/8038465
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi0XdOmTXOUzjGFjSFOdhv5VRlKN2Z70L_el7TbUDx4KyHQkJfyvpd-3_cQutE6gqypuUeYDDyqQu3JiBCPUR4ao7QQzIqTx5NkNKOP83jeQrc7LYwxxpHPjG8f3b98vVKVvSrrp0EE6TJuozYUbrVWa6uDCXj_IcuyiSVrMb-Z-KNjiksYw0M03r6q5om8-VUpffX1y4Xxv2s5Qr29NA9Pd0nnGLVM0UXyDls-4CcWhcbZrrMgXuXYXdK78YExa9zYqb7ipy1xCKZN9-IBbDVlG_yy_KjEOx44DxF3MntoNrx_zkZe0zzBW0JJVnppAsAnDRTlzLq8Kag8QklJmhgBeBrWzmnEAiZSDkGMY5nHROg8DHQcG0EBFJ2gTrEqzCnCmoVJJDQNRZ4A3tKcAEhRPE_gC5MsIWeoa_dnsa79MRbN1pz_PXyBDmyMasrrJeqUm8pcQWIv5bWL6DdUIqSa
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QD3pSA8bf9uDRwX6063o0Q4IKhBgw3Ei7doZoBsHtoH-9X7sB0Xjw1jRN1vTr8r62770PoRulAkBNxR2PSdchia8cGXiewwj3tU6UEMyIkwfDsDchj1M6raHbjRZGa23JZ7plmvYtXy2SwlyVtSM3ALikO2gXcJ_6pVprrYRxefshjuOhoWuxVjX0R80UCxndAzRYf6xkiry1ily2kq9fPoz_nc0ham7FeXi0gZ0jVNNZA8k7bBiBn1hkCseb2oJ4kWJ7TW_7O1ovcWWo-oqf19QhGDbaygewUZWt8Mv8oxDvuGNdROzebKJJ934c95yqfIIzh0NZ7kQhpD6RmxDOjM9bAmcPXxIvCrWAjBrmzknAXCYiDmGkVKbUEyr1XUWpFgTSomNUzxaZPkFYMT8MhCK-SEPIuBT3IE1JeBrCPyZZ6J2ihlmf2bJ0yJhVS3P2d_c12uuNB_1Z_2H4dI72TbxKAuwFquerQl8CzOfyykb3GxyCp-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+26th+International+Conference+on+Computer+Communication+and+Networks+%28ICCCN%29&rft.atitle=A+Study+and+Comparison+of+Human+and+Deep+Learning+Recognition+Performance+under+Visual+Distortions&rft.au=Dodge%2C+Samuel&rft.au=Karam%2C+Lina&rft.date=2017-07-01&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FICCCN.2017.8038465&rft.externalDocID=8038465