Combining temporal interpolation and DCNN for faster recognition of micro-expressions in video sequences

Micro-expressions are the hidden human emotions that are short lived and are very hard to detect them in real time conversations. Micro-expressions recognition has proven to be an important behavior source for lie detection during crime interrogation. SMIC and CASME II are the two widely used, spont...

Full description

Saved in:
Bibliographic Details
Published in2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI) pp. 699 - 703
Main Authors Mayya, Veena, Pai, Radhika M., Manohara Pai, M.M.
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.09.2016
Subjects
Online AccessGet full text
DOI10.1109/ICACCI.2016.7732128

Cover

Abstract Micro-expressions are the hidden human emotions that are short lived and are very hard to detect them in real time conversations. Micro-expressions recognition has proven to be an important behavior source for lie detection during crime interrogation. SMIC and CASME II are the two widely used, spontaneous micro-expressions datasets which are available publicly with baseline results that uses LBP-TOP for feature extraction. Estimation of correct parameters is the key factor for feature extraction using LBP-TOP, which results in long computation time. In this paper, the video sequences are interpolated using temporal interpolation(TIM) and then the facial features are extracted using deep convolutional neural network(DCNN) on CUDA enabled General Purpose Graphics Processing Unit(GPGPU) system. Results show that the proposed combination of DCNN and TIM can achieve better performance than the results published in baseline publications. The feature extraction time is reduced due to the usage of GPU enabled systems.
AbstractList Micro-expressions are the hidden human emotions that are short lived and are very hard to detect them in real time conversations. Micro-expressions recognition has proven to be an important behavior source for lie detection during crime interrogation. SMIC and CASME II are the two widely used, spontaneous micro-expressions datasets which are available publicly with baseline results that uses LBP-TOP for feature extraction. Estimation of correct parameters is the key factor for feature extraction using LBP-TOP, which results in long computation time. In this paper, the video sequences are interpolated using temporal interpolation(TIM) and then the facial features are extracted using deep convolutional neural network(DCNN) on CUDA enabled General Purpose Graphics Processing Unit(GPGPU) system. Results show that the proposed combination of DCNN and TIM can achieve better performance than the results published in baseline publications. The feature extraction time is reduced due to the usage of GPU enabled systems.
Author Mayya, Veena
Manohara Pai, M.M.
Pai, Radhika M.
Author_xml – sequence: 1
  givenname: Veena
  surname: Mayya
  fullname: Mayya, Veena
  email: veena.mayya@manipal.edu
  organization: Department of Information and Communication Technology, Manipal Institute of Technology, Manipal University, Manipal, India, 576104
– sequence: 2
  givenname: Radhika M.
  surname: Pai
  fullname: Pai, Radhika M.
  email: radhika.pai@manipal.edu
  organization: Department of Information and Communication Technology, Manipal Institute of Technology, Manipal University, Manipal, India, 576104
– sequence: 3
  givenname: M.M.
  surname: Manohara Pai
  fullname: Manohara Pai, M.M.
  email: mmm.pai@manipal.edu
  organization: Department of Information and Communication Technology, Manipal Institute of Technology, Manipal University, Manipal, India, 576104
BookMark eNotj81OxCAYRTHRhY7zBLPhBVqBQqFLg3-TTMaNricUPkaSFipUo29v48zqJucmJ_feoMuYIiC0oaSmlHR3W32v9bZmhLa1lA2jTF2gdScVFaQjjLCOX6MPncY-xBCPeIZxStkMOMQZ8pQGM4cUsYkOP-j9HvuUsTdl6XAGm44x_PfJ4zHYnCr4mTKUsrCyKPB3cJBwgc8viBbKLbryZiiwPucKvT89vumXavf6vCzdVYGKdq6Ed73pGKO8V44o7wlT1rVekoU0RnnrHWsNCOekIla2wnHRG0oYZ9yCaFZoc_IGADhMOYwm_x7O_5s_V_RXCQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICACCI.2016.7732128
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509020294
1509020292
EndPage 703
ExternalDocumentID 7732128
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i156t-5fdba92214b8d08ff028cd6f7014b3a8fcfd26ae5dd780c765d45ba102424ce53
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:16 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-5fdba92214b8d08ff028cd6f7014b3a8fcfd26ae5dd780c765d45ba102424ce53
PageCount 5
ParticipantIDs ieee_primary_7732128
PublicationCentury 2000
PublicationDate 2016-09
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09
PublicationDecade 2010
PublicationTitle 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
PublicationTitleAbbrev ICACCI
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8262302
Snippet Micro-expressions are the hidden human emotions that are short lived and are very hard to detect them in real time conversations. Micro-expressions recognition...
SourceID ieee
SourceType Publisher
StartPage 699
SubjectTerms CASME II
Computational modeling
Computer Vision
Confusion Matrix
Facial features
Feature extraction
Graphics processing units
Informatics
Interpolation
Machine Learning
Micro-expressions recognition
SMIC
Video sequences
Title Combining temporal interpolation and DCNN for faster recognition of micro-expressions in video sequences
URI https://ieeexplore.ieee.org/document/7732128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLXaTkyAWsRbHhhx6jh-pCMKVBSpFQOVulV-igpIEKQLX48dhyAQA5tlO4nlm-Re2-ecC8BFmmtCBbHIUGoQzaxBimQTpCmTGBvuUhGIwvMFv13SuxVb9cBlx4Wx1jbgM5uEYnOWbyq9DVtlYyEy_6fN-6DvX7PI1WqFhFI8Gc-Kq6KYBbQWT9qeP1KmNB5jugvmX8-KQJGnZFurRH_8kmH872D2wOibmwfvO6-zD3q2HIJH_1mrJtUDbLWmnuEmZtCKWDcoSwOvi8UC-iAVOhnkEWAHHvLtlYMvAZuH_FAiNLZ897eAgaZXwQ5wPQLL6c1DcYvaHApo41dmNWLOKDkhJKUqNzh3zscT2ptA-KWRymTutDOES8uMETnWgjNDmZJpcN1UW5YdgEFZlfYQQIs5zpSvdlJTJZVy4SKuOfExUErFERiGWVq_RpmMdTtBx39Xn4CdYKkI1zoFg_pta8-8f6_VeWPYTzPIqiY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGWAC1CLeeGDEaR5-pCMKVC20EUMrdav8FAhIEKQLX48dhyAQA1vkxInlq_hcJ-ecC8BFlMoYs1gjhbFCONEKiTgZIokJD0NFTcScUHiW0_EC3y7JsgMuWy2M1romn-nAHdb_8lUp1-5T2YCxxK606QbYtLiPiVdrNVZCUTgcTLKrLJs4vhYNmmt_FE2pMWO0A2ZfT_NUkadgXYlAfvwyYvzvcHZB_1udB-9b3NkDHV30wIN9sUVd7AE2blPP8NHX0PJsN8gLBa-zPIc2TYWGO4ME2NKH7PnSwBfHzkN2KJ4cW7zbW0An1CthS7nug8XoZp6NUVNFAT3avVmFiFGCD-M4wiJVYWqMzSikDQKzmyOR8NRIo2LKNVGKpaFklChMBI8ceGOpSbIPukVZ6AMAdUjDRNhmwyUWXAjjOlFJY5sFRZgdgp6bpdWrN8pYNRN09HfzOdgaz2fT1XSS3x2DbRc1T946Ad3qba1PLdpX4qwO8idGWa1z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Advances+in+Computing%2C+Communications+and+Informatics+%28ICACCI%29&rft.atitle=Combining+temporal+interpolation+and+DCNN+for+faster+recognition+of+micro-expressions+in+video+sequences&rft.au=Mayya%2C+Veena&rft.au=Pai%2C+Radhika+M.&rft.au=Manohara+Pai%2C+M.M.&rft.date=2016-09-01&rft.pub=IEEE&rft.spage=699&rft.epage=703&rft_id=info:doi/10.1109%2FICACCI.2016.7732128&rft.externalDocID=7732128