Predicting solar generation from weather forecasts using machine learning

A key goal of smart grid initiatives is significantly increasing the fraction of grid energy contributed by renewables. One challenge with integrating renewables into the grid is that their power generation is intermittent and uncontrollable. Thus, predicting future renewable generation is important...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE International Conference on Smart Grid Communications pp. 528 - 533
Main Authors Sharma, N., Sharma, P., Irwin, D., Shenoy, P.
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.10.2011
Subjects
Online AccessGet full text
ISBN9781457717048
1457717042
DOI10.1109/SmartGridComm.2011.6102379

Cover

Abstract A key goal of smart grid initiatives is significantly increasing the fraction of grid energy contributed by renewables. One challenge with integrating renewables into the grid is that their power generation is intermittent and uncontrollable. Thus, predicting future renewable generation is important, since the grid must dispatch generators to satisfy demand as generation varies. While manually developing sophisticated prediction models may be feasible for large-scale solar farms, developing them for distributed generation at millions of homes throughout the grid is a challenging problem. To address the problem, in this paper, we explore automatically creating site-specific prediction models for solar power generation from National Weather Service (NWS) weather forecasts using machine learning techniques. We compare multiple regression techniques for generating prediction models, including linear least squares and support vector machines using multiple kernel functions. We evaluate the accuracy of each model using historical NWS forecasts and solar intensity readings from a weather station deployment for nearly a year. Our results show that SVM-based prediction models built using seven distinct weather forecast metrics are 27% more accurate for our site than existing forecast-based models.
AbstractList A key goal of smart grid initiatives is significantly increasing the fraction of grid energy contributed by renewables. One challenge with integrating renewables into the grid is that their power generation is intermittent and uncontrollable. Thus, predicting future renewable generation is important, since the grid must dispatch generators to satisfy demand as generation varies. While manually developing sophisticated prediction models may be feasible for large-scale solar farms, developing them for distributed generation at millions of homes throughout the grid is a challenging problem. To address the problem, in this paper, we explore automatically creating site-specific prediction models for solar power generation from National Weather Service (NWS) weather forecasts using machine learning techniques. We compare multiple regression techniques for generating prediction models, including linear least squares and support vector machines using multiple kernel functions. We evaluate the accuracy of each model using historical NWS forecasts and solar intensity readings from a weather station deployment for nearly a year. Our results show that SVM-based prediction models built using seven distinct weather forecast metrics are 27% more accurate for our site than existing forecast-based models.
Author Shenoy, P.
Sharma, P.
Sharma, N.
Irwin, D.
Author_xml – sequence: 1
  givenname: N.
  surname: Sharma
  fullname: Sharma, N.
  email: nksharma@cs.umass.edu
  organization: Dept. of Comput. Sci., Univ. of Massachusetts Amherst, Amherst, MA, USA
– sequence: 2
  givenname: P.
  surname: Sharma
  fullname: Sharma, P.
  email: pranshus@cs.umass.edu
  organization: Dept. of Comput. Sci., Univ. of Massachusetts Amherst, Amherst, MA, USA
– sequence: 3
  givenname: D.
  surname: Irwin
  fullname: Irwin, D.
  email: irwin@cs.umass.edu
  organization: Dept. of Comput. Sci., Univ. of Massachusetts Amherst, Amherst, MA, USA
– sequence: 4
  givenname: P.
  surname: Shenoy
  fullname: Shenoy, P.
  email: shenoy@cs.umass.edu
  organization: Dept. of Comput. Sci., Univ. of Massachusetts Amherst, Amherst, MA, USA
BookMark eNo1UF9LwzAcjKigm_0EvgTfW_O3aR6l6BwMFNTnkaW_bJE2kSQifnsrzns57jgO7hboLMQACN1Q0lBK9O3LZFJZJT_0cZoaRihtWkoYV_oELaiQSlFFWHuKKq26fy26C1Tl_E5mtK3upLxE6-cEg7fFhz3OcTQJ7yFAMsXHgF2KE_4CUw6QsIsJrMkl48_8m56MPfgAeASTwmxcoXNnxgzVkZfo7eH-tX-sN0-rdX-3qT2VbamldtIxQ8RAHHBttdJcKmK15ZIKy5TkTHEr7KAFU50TzO4YiB1w2VlugC_R9V-vB4DtR_LzFd_b43r-A6A6U80
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SmartGridComm.2011.6102379
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1457717026
9781457717024
EndPage 533
ExternalDocumentID 6102379
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i156t-59f5f2a04d0fe39c9793570c9c3514c2753273c4cd94278f42cb2e4be358c3ae3
IEDL.DBID RIE
ISBN 9781457717048
1457717042
IngestDate Wed Aug 27 02:57:19 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-59f5f2a04d0fe39c9793570c9c3514c2753273c4cd94278f42cb2e4be358c3ae3
PageCount 6
ParticipantIDs ieee_primary_6102379
PublicationCentury 2000
PublicationDate 2011-10
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10
PublicationDecade 2010
PublicationTitle 2011 IEEE International Conference on Smart Grid Communications
PublicationTitleAbbrev SmartGridComm
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669855
Score 1.9991932
Snippet A key goal of smart grid initiatives is significantly increasing the fraction of grid energy contributed by renewables. One challenge with integrating...
SourceID ieee
SourceType Publisher
StartPage 528
SubjectTerms Correlation
Kernel
Measurement
Predictive models
Support vector machines
Weather forecasting
Title Predicting solar generation from weather forecasts using machine learning
URI https://ieeexplore.ieee.org/document/6102379
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi0W9cmbXMW5xQmAx3sNpL0ZQzZJmuH4F_ve2k3UTx4awstaV7L-17yfd9j7CbDFKRcDoHTYR6IPkSByhJNnIZEGqURZJNQePScDCfiaSqnDXa718IAgCefQZcO_V5-vrZbWirrJeQzkKoma-JnVmm19uspmDpVJqXXbskUixRfpleWTvV5VpuO4uh6L0uMzMNmkZMOo3LyrJ_-o82KzzKDQzbaja8il7x1t6Xp2s9f1o3_fYEj1vnW8_HxPlMdswas2uxxvKFNGqI984IKXD73FtQUKU6qE_5RwUOOuBasLsqCE0t-zpeegAm87jgx77DJ4P71bhjUjRWCBZZrZSCVky7SochDB7GyCn9SmYZWWeL12whLGEQ1VthcUScOJyJrIhAGYpnZWEN8wlqr9QpOGQeZ5YkJtQWRCK1DE-I9ysXCpYhF-_qMtWkaZu-Vd8asnoHzvy9fsINox7HrX7JWudnCFSb90lz7aH8BTLephw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHB2Nrx3o2IigQEiHhRrrulRADGBgx8a_3tRsYjQdv25IuXV-W9732-74HcBdTCpImRc8oP_V4AwNPxpGynIZIJFIRyLZC4V4_ao_481iMS3C_08IgoiOfYc1eurP8dKk3dqusHlmfgabcg33K-1zkaq3djgolTxkL4dRboklliivUc1On4j4ubEdpfvXXOcXmaTVLrRIj9_Is3v-j0YrLM60j6G1nmNNL3mqbLKnpz1_mjf_9hGOofiv62GCXq06ghIsKdAYre0xjic9sbUtcNnUm1DZWzOpO2EcOEBkhW9Rqna2Z5clP2dxRMJEVPSemVRi1HocPba9oreDNqGDLPCGNMIHyeeobDKWW9JuKpq-ltsx-HVARQ7hGc51K24vD8EAnAfIEQxHrUGF4CuXFcoFnwFDEaZT4SiOPuFJ-4tMYaUJumoRGG-ocKnYZJu-5e8akWIGLvx_fwkF72OtOup3-yyUcBlvGXeMKytlqg9cEAbLkxkX-C2BzrNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+International+Conference+on+Smart+Grid+Communications&rft.atitle=Predicting+solar+generation+from+weather+forecasts+using+machine+learning&rft.au=Sharma%2C+N.&rft.au=Sharma%2C+P.&rft.au=Irwin%2C+D.&rft.au=Shenoy%2C+P.&rft.date=2011-10-01&rft.pub=IEEE&rft.isbn=9781457717048&rft.spage=528&rft.epage=533&rft_id=info:doi/10.1109%2FSmartGridComm.2011.6102379&rft.externalDocID=6102379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457717048/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457717048/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457717048/sc.gif&client=summon&freeimage=true