Predicting solar generation from weather forecasts using machine learning
A key goal of smart grid initiatives is significantly increasing the fraction of grid energy contributed by renewables. One challenge with integrating renewables into the grid is that their power generation is intermittent and uncontrollable. Thus, predicting future renewable generation is important...
Saved in:
Published in | 2011 IEEE International Conference on Smart Grid Communications pp. 528 - 533 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English Japanese |
Published |
IEEE
01.10.2011
|
Subjects | |
Online Access | Get full text |
ISBN | 9781457717048 1457717042 |
DOI | 10.1109/SmartGridComm.2011.6102379 |
Cover
Abstract | A key goal of smart grid initiatives is significantly increasing the fraction of grid energy contributed by renewables. One challenge with integrating renewables into the grid is that their power generation is intermittent and uncontrollable. Thus, predicting future renewable generation is important, since the grid must dispatch generators to satisfy demand as generation varies. While manually developing sophisticated prediction models may be feasible for large-scale solar farms, developing them for distributed generation at millions of homes throughout the grid is a challenging problem. To address the problem, in this paper, we explore automatically creating site-specific prediction models for solar power generation from National Weather Service (NWS) weather forecasts using machine learning techniques. We compare multiple regression techniques for generating prediction models, including linear least squares and support vector machines using multiple kernel functions. We evaluate the accuracy of each model using historical NWS forecasts and solar intensity readings from a weather station deployment for nearly a year. Our results show that SVM-based prediction models built using seven distinct weather forecast metrics are 27% more accurate for our site than existing forecast-based models. |
---|---|
AbstractList | A key goal of smart grid initiatives is significantly increasing the fraction of grid energy contributed by renewables. One challenge with integrating renewables into the grid is that their power generation is intermittent and uncontrollable. Thus, predicting future renewable generation is important, since the grid must dispatch generators to satisfy demand as generation varies. While manually developing sophisticated prediction models may be feasible for large-scale solar farms, developing them for distributed generation at millions of homes throughout the grid is a challenging problem. To address the problem, in this paper, we explore automatically creating site-specific prediction models for solar power generation from National Weather Service (NWS) weather forecasts using machine learning techniques. We compare multiple regression techniques for generating prediction models, including linear least squares and support vector machines using multiple kernel functions. We evaluate the accuracy of each model using historical NWS forecasts and solar intensity readings from a weather station deployment for nearly a year. Our results show that SVM-based prediction models built using seven distinct weather forecast metrics are 27% more accurate for our site than existing forecast-based models. |
Author | Shenoy, P. Sharma, P. Sharma, N. Irwin, D. |
Author_xml | – sequence: 1 givenname: N. surname: Sharma fullname: Sharma, N. email: nksharma@cs.umass.edu organization: Dept. of Comput. Sci., Univ. of Massachusetts Amherst, Amherst, MA, USA – sequence: 2 givenname: P. surname: Sharma fullname: Sharma, P. email: pranshus@cs.umass.edu organization: Dept. of Comput. Sci., Univ. of Massachusetts Amherst, Amherst, MA, USA – sequence: 3 givenname: D. surname: Irwin fullname: Irwin, D. email: irwin@cs.umass.edu organization: Dept. of Comput. Sci., Univ. of Massachusetts Amherst, Amherst, MA, USA – sequence: 4 givenname: P. surname: Shenoy fullname: Shenoy, P. email: shenoy@cs.umass.edu organization: Dept. of Comput. Sci., Univ. of Massachusetts Amherst, Amherst, MA, USA |
BookMark | eNo1UF9LwzAcjKigm_0EvgTfW_O3aR6l6BwMFNTnkaW_bJE2kSQifnsrzns57jgO7hboLMQACN1Q0lBK9O3LZFJZJT_0cZoaRihtWkoYV_oELaiQSlFFWHuKKq26fy26C1Tl_E5mtK3upLxE6-cEg7fFhz3OcTQJ7yFAMsXHgF2KE_4CUw6QsIsJrMkl48_8m56MPfgAeASTwmxcoXNnxgzVkZfo7eH-tX-sN0-rdX-3qT2VbamldtIxQ8RAHHBttdJcKmK15ZIKy5TkTHEr7KAFU50TzO4YiB1w2VlugC_R9V-vB4DtR_LzFd_b43r-A6A6U80 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SmartGridComm.2011.6102379 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1457717026 9781457717024 |
EndPage | 533 |
ExternalDocumentID | 6102379 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i156t-59f5f2a04d0fe39c9793570c9c3514c2753273c4cd94278f42cb2e4be358c3ae3 |
IEDL.DBID | RIE |
ISBN | 9781457717048 1457717042 |
IngestDate | Wed Aug 27 02:57:19 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i156t-59f5f2a04d0fe39c9793570c9c3514c2753273c4cd94278f42cb2e4be358c3ae3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6102379 |
PublicationCentury | 2000 |
PublicationDate | 2011-10 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10 |
PublicationDecade | 2010 |
PublicationTitle | 2011 IEEE International Conference on Smart Grid Communications |
PublicationTitleAbbrev | SmartGridComm |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000669855 |
Score | 1.9991932 |
Snippet | A key goal of smart grid initiatives is significantly increasing the fraction of grid energy contributed by renewables. One challenge with integrating... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 528 |
SubjectTerms | Correlation Kernel Measurement Predictive models Support vector machines Weather forecasting |
Title | Predicting solar generation from weather forecasts using machine learning |
URI | https://ieeexplore.ieee.org/document/6102379 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi0W9cmbXMW5xQmAx3sNpL0ZQzZJmuH4F_ve2k3UTx4awstaV7L-17yfd9j7CbDFKRcDoHTYR6IPkSByhJNnIZEGqURZJNQePScDCfiaSqnDXa718IAgCefQZcO_V5-vrZbWirrJeQzkKoma-JnVmm19uspmDpVJqXXbskUixRfpleWTvV5VpuO4uh6L0uMzMNmkZMOo3LyrJ_-o82KzzKDQzbaja8il7x1t6Xp2s9f1o3_fYEj1vnW8_HxPlMdswas2uxxvKFNGqI984IKXD73FtQUKU6qE_5RwUOOuBasLsqCE0t-zpeegAm87jgx77DJ4P71bhjUjRWCBZZrZSCVky7SochDB7GyCn9SmYZWWeL12whLGEQ1VthcUScOJyJrIhAGYpnZWEN8wlqr9QpOGQeZ5YkJtQWRCK1DE-I9ysXCpYhF-_qMtWkaZu-Vd8asnoHzvy9fsINox7HrX7JWudnCFSb90lz7aH8BTLephw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHB2Nrx3o2IigQEiHhRrrulRADGBgx8a_3tRsYjQdv25IuXV-W9732-74HcBdTCpImRc8oP_V4AwNPxpGynIZIJFIRyLZC4V4_ao_481iMS3C_08IgoiOfYc1eurP8dKk3dqusHlmfgabcg33K-1zkaq3djgolTxkL4dRboklliivUc1On4j4ubEdpfvXXOcXmaTVLrRIj9_Is3v-j0YrLM60j6G1nmNNL3mqbLKnpz1_mjf_9hGOofiv62GCXq06ghIsKdAYre0xjic9sbUtcNnUm1DZWzOpO2EcOEBkhW9Rqna2Z5clP2dxRMJEVPSemVRi1HocPba9oreDNqGDLPCGNMIHyeeobDKWW9JuKpq-ltsx-HVARQ7hGc51K24vD8EAnAfIEQxHrUGF4CuXFcoFnwFDEaZT4SiOPuFJ-4tMYaUJumoRGG-ocKnYZJu-5e8akWIGLvx_fwkF72OtOup3-yyUcBlvGXeMKytlqg9cEAbLkxkX-C2BzrNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+International+Conference+on+Smart+Grid+Communications&rft.atitle=Predicting+solar+generation+from+weather+forecasts+using+machine+learning&rft.au=Sharma%2C+N.&rft.au=Sharma%2C+P.&rft.au=Irwin%2C+D.&rft.au=Shenoy%2C+P.&rft.date=2011-10-01&rft.pub=IEEE&rft.isbn=9781457717048&rft.spage=528&rft.epage=533&rft_id=info:doi/10.1109%2FSmartGridComm.2011.6102379&rft.externalDocID=6102379 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457717048/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457717048/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457717048/sc.gif&client=summon&freeimage=true |