Identification of motor imagery movements from EEG signals using Dual Tree Complex Wavelet Transform
In this paper, Dual Tree Complex Wavelet Transform (DTCWT) domain based feature extraction method has been proposed to identify left and right hand motor imagery movements from electroencephalogram (EEG) signals. After first performing auto-correlation of the EEG signals to enhance the weak brain si...
Saved in:
Published in | 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) pp. 290 - 296 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2015
|
Subjects | |
Online Access | Get full text |
ISBN | 9781479987900 1479987905 |
DOI | 10.1109/ICACCI.2015.7275623 |
Cover
Abstract | In this paper, Dual Tree Complex Wavelet Transform (DTCWT) domain based feature extraction method has been proposed to identify left and right hand motor imagery movements from electroencephalogram (EEG) signals. After first performing auto-correlation of the EEG signals to enhance the weak brain signals and reduce noise, the EEG signals are decomposed into several bands of real and imaginary coefficients using DTCWT. The energy of the coefficients from relevant bands have been extracted as features and from the one way ANOVA analysis, scatter plots, box plots and histograms, this features are shown to be promising to distinguish various kinds of EEG signals. Publicly available benchmark BCI-competition 2003 Graz motor imagery dataset is used for this experiment. Among different types of classifiers developed such as support vector machine (SVM), probabilistic neural network (PNN), adaptive neuro fuzzy inference system (ANFIS) and K-nearest neighbor (KNN), KNN classifiers have been shown to provide a good mean accuracy of 91.07% which is better than several existing techniques. |
---|---|
AbstractList | In this paper, Dual Tree Complex Wavelet Transform (DTCWT) domain based feature extraction method has been proposed to identify left and right hand motor imagery movements from electroencephalogram (EEG) signals. After first performing auto-correlation of the EEG signals to enhance the weak brain signals and reduce noise, the EEG signals are decomposed into several bands of real and imaginary coefficients using DTCWT. The energy of the coefficients from relevant bands have been extracted as features and from the one way ANOVA analysis, scatter plots, box plots and histograms, this features are shown to be promising to distinguish various kinds of EEG signals. Publicly available benchmark BCI-competition 2003 Graz motor imagery dataset is used for this experiment. Among different types of classifiers developed such as support vector machine (SVM), probabilistic neural network (PNN), adaptive neuro fuzzy inference system (ANFIS) and K-nearest neighbor (KNN), KNN classifiers have been shown to provide a good mean accuracy of 91.07% which is better than several existing techniques. |
Author | Hassan, Ahnaf Rashik Bhuiyan, Mohammed Imamul Hassan Bashar, Syed Khairul |
Author_xml | – sequence: 1 givenname: Syed Khairul surname: Bashar fullname: Bashar, Syed Khairul email: skbashar09@yahoo.com organization: Dept. of Electr. & Electron. Eng., Bangladesh Univ. of Eng. & Technol., Dhaka, Bangladesh – sequence: 2 givenname: Ahnaf Rashik surname: Hassan fullname: Hassan, Ahnaf Rashik organization: Dept. of Electr. & Electron. Eng., Bangladesh Univ. of Eng. & Technol., Dhaka, Bangladesh – sequence: 3 givenname: Mohammed Imamul Hassan surname: Bhuiyan fullname: Bhuiyan, Mohammed Imamul Hassan organization: Dept. of Electr. & Electron. Eng., Bangladesh Univ. of Eng. & Technol., Dhaka, Bangladesh |
BookMark | eNpVUEtOwzAUNAIWUHqCbnyBBH_i3xKFUCJVYlPEsnKS58hSYldOWtHbE4luuhrN08xo3jyjhxADILShJKeUmNe6fCvLOmeEilwxJSTjd2htlKaFMkYrw4r7G07IE-rqDsLsnW_t7GPA0eExzjFhP9oe0mVhZxgXyYRdiiOuqi2efB_sMOHT5EOP3092wPsEgMs4Hgf4xT_2DAPMy9GGycU0vqBHtxhgfcUV-v6o9uVntvvaLq13madCzhkvtGTSgYMGNG2ajgnqhBaGEWkkN4qDto6awhAurWgEdy2BrtBF2ynGHV-hzX-uB4DDMS0_pMvhugX_A5TYVwU |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICACCI.2015.7275623 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781479987924 1479987921 |
EndPage | 296 |
ExternalDocumentID | 7275623 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i156t-348626fefebe81bbd251f5859206963973e8af1949036a5b53fc0ed484cd723f3 |
IEDL.DBID | RIE |
ISBN | 9781479987900 1479987905 |
IngestDate | Wed Jun 26 19:24:35 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i156t-348626fefebe81bbd251f5859206963973e8af1949036a5b53fc0ed484cd723f3 |
PageCount | 7 |
ParticipantIDs | ieee_primary_7275623 |
PublicationCentury | 2000 |
PublicationDate | 20150801 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 20150801 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) |
PublicationTitleAbbrev | ICACCI |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7726135 |
Snippet | In this paper, Dual Tree Complex Wavelet Transform (DTCWT) domain based feature extraction method has been proposed to identify left and right hand motor... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 290 |
SubjectTerms | Auto correlation BCI Discrete wavelet transforms Dual Tree Complex Wavelet Transform (DTCWT) Electroencephalogram (EEG) Electroencephalography Energy Feature extraction Histograms KNN classifier Wavelet analysis |
Title | Identification of motor imagery movements from EEG signals using Dual Tree Complex Wavelet Transform |
URI | https://ieeexplore.ieee.org/document/7275623 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhJmofzGlFIaZGKGFrRrYrjM6ooDSqJBPx67pK0PMTAZluKZfms3J39fd8xdqFsoV1HBoZl6dAQOvQMDOpDQwrt-WCrQPrEHR7f-cOpuJ15sxa73HJhAKACn4FJzeotX-VZSVdl_YC0yh23zdp4zL5xtQKcnoSmNhJOTd9qVIZsK-qP4qs4HhGUyzObaX7UU6ncyWCXjTcLqVEkT2ZZSDP7-KXR-N-V7rHeF3GP329d0j5rwarLVE3G1c3tHM81R_vka754JgGLd-xVouHFKyeyCU-SG06wDjyYnGDxj_y6TJd8sgbg9PtYwht_SKlgRcEnm7i3x6aDZBIPjaa4grHAlK0wXEG5jAaNVsTQVSoMdDTmDpFj-RG99rkQptqORIQ-LvWk5-rMAiVCkanAcbV7wDqrfAWHjOPXNkjMPAKh0MSO1GCnlicdSco3wj5iXdqh-UutnzFvNuf47-ETtkNWqkF2p6xTrEs4Q8dfyPPK4p-k96v8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOcAJUIvY8YEjSbPYWY4otLTQVhxS0VsVx2NUUVpUEgn4ejxJWhZx4BZH8iJPlJmx33tDyIW0mXId4RuWpQKDqYAbOqgPDMEU98CWvvCQOzwYet0Rux3zcY1crrkwAFCAz8DEx-IuXy7SHI_KWj5qlTvuBtnUfp_xb2wtX0-AUlMrEaeqbVU6Q7YVtnrRVRT1EMzFzWqgHxVVCofS2SGD1VJKHMmTmWfCTD9-qTT-d627pPlF3aP3a6e0R2owbxBZ0nFVdT5HF4pqCy2WdPqMEhbvulXIhmevFOkmtN2-oQjs0J8mRWD8I73OkxmNlwAUfyAzeKMPCZasyGi8inybZNRpx1HXqMorGFOdtGWGyzCbUaC0HXXwKqQOdZTOHkLH8kK873MhSJQdslB7uYQL7qrUAskClkrfcZW7T-rzxRwOCNW9bRA69_CZ1EZ2hAI7sbhwBGrfMPuQNHCHJi-lgsak2pyjv1-fk61uPOhP-r3h3THZRouVkLsTUs-WOZzqMCATZ4X1PwHXLa9J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Advances+in+Computing%2C+Communications+and+Informatics+%28ICACCI%29&rft.atitle=Identification+of+motor+imagery+movements+from+EEG+signals+using+Dual+Tree+Complex+Wavelet+Transform&rft.au=Bashar%2C+Syed+Khairul&rft.au=Hassan%2C+Ahnaf+Rashik&rft.au=Bhuiyan%2C+Mohammed+Imamul+Hassan&rft.date=2015-08-01&rft.pub=IEEE&rft.isbn=9781479987900&rft.spage=290&rft.epage=296&rft_id=info:doi/10.1109%2FICACCI.2015.7275623&rft.externalDocID=7275623 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/sc.gif&client=summon&freeimage=true |