Identification of motor imagery movements from EEG signals using Dual Tree Complex Wavelet Transform

In this paper, Dual Tree Complex Wavelet Transform (DTCWT) domain based feature extraction method has been proposed to identify left and right hand motor imagery movements from electroencephalogram (EEG) signals. After first performing auto-correlation of the EEG signals to enhance the weak brain si...

Full description

Saved in:
Bibliographic Details
Published in2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) pp. 290 - 296
Main Authors Bashar, Syed Khairul, Hassan, Ahnaf Rashik, Bhuiyan, Mohammed Imamul Hassan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2015
Subjects
Online AccessGet full text
ISBN9781479987900
1479987905
DOI10.1109/ICACCI.2015.7275623

Cover

Abstract In this paper, Dual Tree Complex Wavelet Transform (DTCWT) domain based feature extraction method has been proposed to identify left and right hand motor imagery movements from electroencephalogram (EEG) signals. After first performing auto-correlation of the EEG signals to enhance the weak brain signals and reduce noise, the EEG signals are decomposed into several bands of real and imaginary coefficients using DTCWT. The energy of the coefficients from relevant bands have been extracted as features and from the one way ANOVA analysis, scatter plots, box plots and histograms, this features are shown to be promising to distinguish various kinds of EEG signals. Publicly available benchmark BCI-competition 2003 Graz motor imagery dataset is used for this experiment. Among different types of classifiers developed such as support vector machine (SVM), probabilistic neural network (PNN), adaptive neuro fuzzy inference system (ANFIS) and K-nearest neighbor (KNN), KNN classifiers have been shown to provide a good mean accuracy of 91.07% which is better than several existing techniques.
AbstractList In this paper, Dual Tree Complex Wavelet Transform (DTCWT) domain based feature extraction method has been proposed to identify left and right hand motor imagery movements from electroencephalogram (EEG) signals. After first performing auto-correlation of the EEG signals to enhance the weak brain signals and reduce noise, the EEG signals are decomposed into several bands of real and imaginary coefficients using DTCWT. The energy of the coefficients from relevant bands have been extracted as features and from the one way ANOVA analysis, scatter plots, box plots and histograms, this features are shown to be promising to distinguish various kinds of EEG signals. Publicly available benchmark BCI-competition 2003 Graz motor imagery dataset is used for this experiment. Among different types of classifiers developed such as support vector machine (SVM), probabilistic neural network (PNN), adaptive neuro fuzzy inference system (ANFIS) and K-nearest neighbor (KNN), KNN classifiers have been shown to provide a good mean accuracy of 91.07% which is better than several existing techniques.
Author Hassan, Ahnaf Rashik
Bhuiyan, Mohammed Imamul Hassan
Bashar, Syed Khairul
Author_xml – sequence: 1
  givenname: Syed Khairul
  surname: Bashar
  fullname: Bashar, Syed Khairul
  email: skbashar09@yahoo.com
  organization: Dept. of Electr. & Electron. Eng., Bangladesh Univ. of Eng. & Technol., Dhaka, Bangladesh
– sequence: 2
  givenname: Ahnaf Rashik
  surname: Hassan
  fullname: Hassan, Ahnaf Rashik
  organization: Dept. of Electr. & Electron. Eng., Bangladesh Univ. of Eng. & Technol., Dhaka, Bangladesh
– sequence: 3
  givenname: Mohammed Imamul Hassan
  surname: Bhuiyan
  fullname: Bhuiyan, Mohammed Imamul Hassan
  organization: Dept. of Electr. & Electron. Eng., Bangladesh Univ. of Eng. & Technol., Dhaka, Bangladesh
BookMark eNpVUEtOwzAUNAIWUHqCbnyBBH_i3xKFUCJVYlPEsnKS58hSYldOWtHbE4luuhrN08xo3jyjhxADILShJKeUmNe6fCvLOmeEilwxJSTjd2htlKaFMkYrw4r7G07IE-rqDsLsnW_t7GPA0eExzjFhP9oe0mVhZxgXyYRdiiOuqi2efB_sMOHT5EOP3092wPsEgMs4Hgf4xT_2DAPMy9GGycU0vqBHtxhgfcUV-v6o9uVntvvaLq13madCzhkvtGTSgYMGNG2ajgnqhBaGEWkkN4qDto6awhAurWgEdy2BrtBF2ynGHV-hzX-uB4DDMS0_pMvhugX_A5TYVwU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICACCI.2015.7275623
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479987924
1479987921
EndPage 296
ExternalDocumentID 7275623
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i156t-348626fefebe81bbd251f5859206963973e8af1949036a5b53fc0ed484cd723f3
IEDL.DBID RIE
ISBN 9781479987900
1479987905
IngestDate Wed Jun 26 19:24:35 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-348626fefebe81bbd251f5859206963973e8af1949036a5b53fc0ed484cd723f3
PageCount 7
ParticipantIDs ieee_primary_7275623
PublicationCentury 2000
PublicationDate 20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 20150801
  day: 01
PublicationDecade 2010
PublicationTitle 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
PublicationTitleAbbrev ICACCI
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7726135
Snippet In this paper, Dual Tree Complex Wavelet Transform (DTCWT) domain based feature extraction method has been proposed to identify left and right hand motor...
SourceID ieee
SourceType Publisher
StartPage 290
SubjectTerms Auto correlation
BCI
Discrete wavelet transforms
Dual Tree Complex Wavelet Transform (DTCWT)
Electroencephalogram (EEG)
Electroencephalography
Energy
Feature extraction
Histograms
KNN classifier
Wavelet analysis
Title Identification of motor imagery movements from EEG signals using Dual Tree Complex Wavelet Transform
URI https://ieeexplore.ieee.org/document/7275623
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhJmofzGlFIaZGKGFrRrYrjM6ooDSqJBPx67pK0PMTAZluKZfms3J39fd8xdqFsoV1HBoZl6dAQOvQMDOpDQwrt-WCrQPrEHR7f-cOpuJ15sxa73HJhAKACn4FJzeotX-VZSVdl_YC0yh23zdp4zL5xtQKcnoSmNhJOTd9qVIZsK-qP4qs4HhGUyzObaX7UU6ncyWCXjTcLqVEkT2ZZSDP7-KXR-N-V7rHeF3GP329d0j5rwarLVE3G1c3tHM81R_vka754JgGLd-xVouHFKyeyCU-SG06wDjyYnGDxj_y6TJd8sgbg9PtYwht_SKlgRcEnm7i3x6aDZBIPjaa4grHAlK0wXEG5jAaNVsTQVSoMdDTmDpFj-RG99rkQptqORIQ-LvWk5-rMAiVCkanAcbV7wDqrfAWHjOPXNkjMPAKh0MSO1GCnlicdSco3wj5iXdqh-UutnzFvNuf47-ETtkNWqkF2p6xTrEs4Q8dfyPPK4p-k96v8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOcAJUIvY8YEjSbPYWY4otLTQVhxS0VsVx2NUUVpUEgn4ejxJWhZx4BZH8iJPlJmx33tDyIW0mXId4RuWpQKDqYAbOqgPDMEU98CWvvCQOzwYet0Rux3zcY1crrkwAFCAz8DEx-IuXy7SHI_KWj5qlTvuBtnUfp_xb2wtX0-AUlMrEaeqbVU6Q7YVtnrRVRT1EMzFzWqgHxVVCofS2SGD1VJKHMmTmWfCTD9-qTT-d627pPlF3aP3a6e0R2owbxBZ0nFVdT5HF4pqCy2WdPqMEhbvulXIhmevFOkmtN2-oQjs0J8mRWD8I73OkxmNlwAUfyAzeKMPCZasyGi8inybZNRpx1HXqMorGFOdtGWGyzCbUaC0HXXwKqQOdZTOHkLH8kK873MhSJQdslB7uYQL7qrUAskClkrfcZW7T-rzxRwOCNW9bRA69_CZ1EZ2hAI7sbhwBGrfMPuQNHCHJi-lgsak2pyjv1-fk61uPOhP-r3h3THZRouVkLsTUs-WOZzqMCATZ4X1PwHXLa9J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Advances+in+Computing%2C+Communications+and+Informatics+%28ICACCI%29&rft.atitle=Identification+of+motor+imagery+movements+from+EEG+signals+using+Dual+Tree+Complex+Wavelet+Transform&rft.au=Bashar%2C+Syed+Khairul&rft.au=Hassan%2C+Ahnaf+Rashik&rft.au=Bhuiyan%2C+Mohammed+Imamul+Hassan&rft.date=2015-08-01&rft.pub=IEEE&rft.isbn=9781479987900&rft.spage=290&rft.epage=296&rft_id=info:doi/10.1109%2FICACCI.2015.7275623&rft.externalDocID=7275623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/sc.gif&client=summon&freeimage=true