What can i do around here? Deep functional scene understanding for cognitive robots
For robots that have the capability to interact with the physical environment through their end effectors, understanding the surrounding scenes is not merely a task of image classification or object recognition. To perform actual tasks, it is critical for the robot to have a functional understanding...
Saved in:
Published in | 2017 IEEE International Conference on Robotics and Automation (ICRA) pp. 4604 - 4611 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English Japanese |
Published |
IEEE
01.05.2017
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICRA.2017.7989535 |
Cover
Loading…
Abstract | For robots that have the capability to interact with the physical environment through their end effectors, understanding the surrounding scenes is not merely a task of image classification or object recognition. To perform actual tasks, it is critical for the robot to have a functional understanding of the visual scene. Here, we address the problem of localization and recognition of functional areas in an arbitrary indoor scene, formulated as a two-stage deep learning based detection pipeline. A new scene functionality testing-bed, which is compiled from two publicly available indoor scene datasets, is used for evaluation. Our method is evaluated quantitatively on the new dataset, demonstrating the ability to perform efficient recognition of functional areas from arbitrary indoor scenes. We also demonstrate that our detection model can be generalized to novel indoor scenes by cross validating it with images from two different datasets. |
---|---|
AbstractList | For robots that have the capability to interact with the physical environment through their end effectors, understanding the surrounding scenes is not merely a task of image classification or object recognition. To perform actual tasks, it is critical for the robot to have a functional understanding of the visual scene. Here, we address the problem of localization and recognition of functional areas in an arbitrary indoor scene, formulated as a two-stage deep learning based detection pipeline. A new scene functionality testing-bed, which is compiled from two publicly available indoor scene datasets, is used for evaluation. Our method is evaluated quantitatively on the new dataset, demonstrating the ability to perform efficient recognition of functional areas from arbitrary indoor scenes. We also demonstrate that our detection model can be generalized to novel indoor scenes by cross validating it with images from two different datasets. |
Author | Ren Mao Chengxi Ye Yezhou Yang Fermuller, Cornelia Aloimonos, Yiannis |
Author_xml | – sequence: 1 surname: Chengxi Ye fullname: Chengxi Ye email: cxy@umiacs.umd.edu organization: Comput. Vision Lab., Univ. of Maryland, College Park, MD, USA – sequence: 2 surname: Yezhou Yang fullname: Yezhou Yang email: yz.yang@asu.edu organization: CIDSE, Arizona State Univ., Tempe, AZ, USA – sequence: 3 surname: Ren Mao fullname: Ren Mao email: neroam@umd.edu organization: ARC Lab., Univ. of Maryland, College Park, MD, USA – sequence: 4 givenname: Cornelia surname: Fermuller fullname: Fermuller, Cornelia email: fer@umiacs.umd.edu organization: Comput. Vision Lab., Univ. of Maryland, College Park, MD, USA – sequence: 5 givenname: Yiannis surname: Aloimonos fullname: Aloimonos, Yiannis email: yiannis@umiacs.umd.edu organization: Comput. Vision Lab., Univ. of Maryland, College Park, MD, USA |
BookMark | eNotj81KAzEURiPowlYfQNzcF5gxmUwmyUrKqLVQEFpFdyU_d9pATUomFXx7C3bzncWBA9-EXMYUkZA7RmvGqH5Y9KtZ3VAma6mVFlxckAkTVNO24_zrmqw_d6aAMxEC-AQmp2P0sMOMj_CEeIDhGF0JKZo9jA4jwsljHouJPsQtDCmDS9sYSvhByMmmMt6Qq8HsR7w9c0o-Xp7f-9dq-TZf9LNlFZjoSsUa11Breeekp9Yx663QAhXlreXUKyWV1FaftsV2aJVDK5xxjTRcaj9oPiX3_92AiJtDDt8m_27OP_kfnnFNPA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICRA.2017.7989535 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 150904633X 9781509046331 |
EndPage | 4611 |
ExternalDocumentID | 7989535 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i156t-12c20bb36c7d0bc1bdb595e8034b30d887879b97874e4f48ceb5cac27a379df93 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:05 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i156t-12c20bb36c7d0bc1bdb595e8034b30d887879b97874e4f48ceb5cac27a379df93 |
PageCount | 8 |
ParticipantIDs | ieee_primary_7989535 |
PublicationCentury | 2000 |
PublicationDate | 2017-05 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05 |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE International Conference on Robotics and Automation (ICRA) |
PublicationTitleAbbrev | ICRA |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8486029 |
Snippet | For robots that have the capability to interact with the physical environment through their end effectors, understanding the surrounding scenes is not merely a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4604 |
SubjectTerms | Biological neural networks Computer vision Image color analysis Ontologies Pipelines Visualization |
Title | What can i do around here? Deep functional scene understanding for cognitive robots |
URI | https://ieeexplore.ieee.org/document/7989535 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp5UNvGbHDzaLm2TtjmJTMcUJqIOdht5yQsMYR2zvfjXm7R1fuDBWwiBhPdC3kd-v_cIudAQK2nc5bWJkgHPbRqAyY1z5LgG71_nNZpw-pBOZvx-LuYdcrnlwiBiDT7D0A_rv3xT6MqnyoaZzKVIRJd0XeDWcLXaj8qIyeHd6OnaY7WysF33o2FKbS_Gu2T6uVMDE3kNqxJC_f6rCON_j7JHBl_MPPq4tTn7pIOrPnn29bepkxFdUlNQtfGtkqhTBl7RG8Q19caryflRX7wJafWd0kKd30q3MCK6KaAo3wZkNr59GU2CtllCsHQhWBlEsY4ZQJLqzDDQERgQUmDOEg4JM-4tyTMJLmbMOHLLc40gtNJxppJMGiuTA9JbFSs8JBRsLLRkNpVKcSVRpQaM0Mw658tGih-RvhfIYt3Uw1i0sjj-e_qE7HilNCDBU9IrNxWeOUNewnmtwQ9pPKHI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61HvSk0opvc_DobveRbDYnkWpptS2iLfRWMnlAEbql7l789Sa7a33gwVsIgYSZkG9m8s0MQlcSIsGVvbwmFtwjqUk8UKmyhhyR4OzrtGQTjsZJf0oeZnTWQNebXBitdUk-074bln_5KpOFC5V1GE85jekW2ra4T3iVrVV_VYYB7wy6z7eOrcX8euWPliklYvT20Ohzr4oo8uoXOfjy_VcZxv8eZh-1v3Lz8NMGdQ5QQy9b6MVV4MZWSniBVYbF2jVLwlYd-gbfab3CDr6qqB925Zs0Lr4ntWBrueINkQivM8jytzaa9u4n3b5Xt0vwFtYJy70wklEAECeSqQBkCAoopzoNYgJxoOxrkjIO1mtkRBNDUqmBSiEjJmLGleHxIWous6U-QhhMRCUPTMKFIIJrkShQVAbGml8mFOQYtZxA5quqIsa8lsXJ39OXaKc_GQ3nw8H48RTtOgVVlMEz1MzXhT63sJ7DRanNDxSXpRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=What+can+i+do+around+here%3F+Deep+functional+scene+understanding+for+cognitive+robots&rft.au=Chengxi+Ye&rft.au=Yezhou+Yang&rft.au=Ren+Mao&rft.au=Fermuller%2C+Cornelia&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=4604&rft.epage=4611&rft_id=info:doi/10.1109%2FICRA.2017.7989535&rft.externalDocID=7989535 |