What can i do around here? Deep functional scene understanding for cognitive robots

For robots that have the capability to interact with the physical environment through their end effectors, understanding the surrounding scenes is not merely a task of image classification or object recognition. To perform actual tasks, it is critical for the robot to have a functional understanding...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE International Conference on Robotics and Automation (ICRA) pp. 4604 - 4611
Main Authors Chengxi Ye, Yezhou Yang, Ren Mao, Fermuller, Cornelia, Aloimonos, Yiannis
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.05.2017
Subjects
Online AccessGet full text
DOI10.1109/ICRA.2017.7989535

Cover

Loading…
Abstract For robots that have the capability to interact with the physical environment through their end effectors, understanding the surrounding scenes is not merely a task of image classification or object recognition. To perform actual tasks, it is critical for the robot to have a functional understanding of the visual scene. Here, we address the problem of localization and recognition of functional areas in an arbitrary indoor scene, formulated as a two-stage deep learning based detection pipeline. A new scene functionality testing-bed, which is compiled from two publicly available indoor scene datasets, is used for evaluation. Our method is evaluated quantitatively on the new dataset, demonstrating the ability to perform efficient recognition of functional areas from arbitrary indoor scenes. We also demonstrate that our detection model can be generalized to novel indoor scenes by cross validating it with images from two different datasets.
AbstractList For robots that have the capability to interact with the physical environment through their end effectors, understanding the surrounding scenes is not merely a task of image classification or object recognition. To perform actual tasks, it is critical for the robot to have a functional understanding of the visual scene. Here, we address the problem of localization and recognition of functional areas in an arbitrary indoor scene, formulated as a two-stage deep learning based detection pipeline. A new scene functionality testing-bed, which is compiled from two publicly available indoor scene datasets, is used for evaluation. Our method is evaluated quantitatively on the new dataset, demonstrating the ability to perform efficient recognition of functional areas from arbitrary indoor scenes. We also demonstrate that our detection model can be generalized to novel indoor scenes by cross validating it with images from two different datasets.
Author Ren Mao
Chengxi Ye
Yezhou Yang
Fermuller, Cornelia
Aloimonos, Yiannis
Author_xml – sequence: 1
  surname: Chengxi Ye
  fullname: Chengxi Ye
  email: cxy@umiacs.umd.edu
  organization: Comput. Vision Lab., Univ. of Maryland, College Park, MD, USA
– sequence: 2
  surname: Yezhou Yang
  fullname: Yezhou Yang
  email: yz.yang@asu.edu
  organization: CIDSE, Arizona State Univ., Tempe, AZ, USA
– sequence: 3
  surname: Ren Mao
  fullname: Ren Mao
  email: neroam@umd.edu
  organization: ARC Lab., Univ. of Maryland, College Park, MD, USA
– sequence: 4
  givenname: Cornelia
  surname: Fermuller
  fullname: Fermuller, Cornelia
  email: fer@umiacs.umd.edu
  organization: Comput. Vision Lab., Univ. of Maryland, College Park, MD, USA
– sequence: 5
  givenname: Yiannis
  surname: Aloimonos
  fullname: Aloimonos, Yiannis
  email: yiannis@umiacs.umd.edu
  organization: Comput. Vision Lab., Univ. of Maryland, College Park, MD, USA
BookMark eNotj81KAzEURiPowlYfQNzcF5gxmUwmyUrKqLVQEFpFdyU_d9pATUomFXx7C3bzncWBA9-EXMYUkZA7RmvGqH5Y9KtZ3VAma6mVFlxckAkTVNO24_zrmqw_d6aAMxEC-AQmp2P0sMOMj_CEeIDhGF0JKZo9jA4jwsljHouJPsQtDCmDS9sYSvhByMmmMt6Qq8HsR7w9c0o-Xp7f-9dq-TZf9LNlFZjoSsUa11Breeekp9Yx663QAhXlreXUKyWV1FaftsV2aJVDK5xxjTRcaj9oPiX3_92AiJtDDt8m_27OP_kfnnFNPA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA.2017.7989535
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 150904633X
9781509046331
EndPage 4611
ExternalDocumentID 7989535
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i156t-12c20bb36c7d0bc1bdb595e8034b30d887879b97874e4f48ceb5cac27a379df93
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:05 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-12c20bb36c7d0bc1bdb595e8034b30d887879b97874e4f48ceb5cac27a379df93
PageCount 8
ParticipantIDs ieee_primary_7989535
PublicationCentury 2000
PublicationDate 2017-05
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05
PublicationDecade 2010
PublicationTitle 2017 IEEE International Conference on Robotics and Automation (ICRA)
PublicationTitleAbbrev ICRA
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8486029
Snippet For robots that have the capability to interact with the physical environment through their end effectors, understanding the surrounding scenes is not merely a...
SourceID ieee
SourceType Publisher
StartPage 4604
SubjectTerms Biological neural networks
Computer vision
Image color analysis
Ontologies
Pipelines
Visualization
Title What can i do around here? Deep functional scene understanding for cognitive robots
URI https://ieeexplore.ieee.org/document/7989535
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp5UNvGbHDzaLm2TtjmJTMcUJqIOdht5yQsMYR2zvfjXm7R1fuDBWwiBhPdC3kd-v_cIudAQK2nc5bWJkgHPbRqAyY1z5LgG71_nNZpw-pBOZvx-LuYdcrnlwiBiDT7D0A_rv3xT6MqnyoaZzKVIRJd0XeDWcLXaj8qIyeHd6OnaY7WysF33o2FKbS_Gu2T6uVMDE3kNqxJC_f6rCON_j7JHBl_MPPq4tTn7pIOrPnn29bepkxFdUlNQtfGtkqhTBl7RG8Q19caryflRX7wJafWd0kKd30q3MCK6KaAo3wZkNr59GU2CtllCsHQhWBlEsY4ZQJLqzDDQERgQUmDOEg4JM-4tyTMJLmbMOHLLc40gtNJxppJMGiuTA9JbFSs8JBRsLLRkNpVKcSVRpQaM0Mw658tGih-RvhfIYt3Uw1i0sjj-e_qE7HilNCDBU9IrNxWeOUNewnmtwQ9pPKHI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61HvSk0opvc_DobveRbDYnkWpptS2iLfRWMnlAEbql7l789Sa7a33gwVsIgYSZkG9m8s0MQlcSIsGVvbwmFtwjqUk8UKmyhhyR4OzrtGQTjsZJf0oeZnTWQNebXBitdUk-074bln_5KpOFC5V1GE85jekW2ra4T3iVrVV_VYYB7wy6z7eOrcX8euWPliklYvT20Ohzr4oo8uoXOfjy_VcZxv8eZh-1v3Lz8NMGdQ5QQy9b6MVV4MZWSniBVYbF2jVLwlYd-gbfab3CDr6qqB925Zs0Lr4ntWBrueINkQivM8jytzaa9u4n3b5Xt0vwFtYJy70wklEAECeSqQBkCAoopzoNYgJxoOxrkjIO1mtkRBNDUqmBSiEjJmLGleHxIWous6U-QhhMRCUPTMKFIIJrkShQVAbGml8mFOQYtZxA5quqIsa8lsXJ39OXaKc_GQ3nw8H48RTtOgVVlMEz1MzXhT63sJ7DRanNDxSXpRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=What+can+i+do+around+here%3F+Deep+functional+scene+understanding+for+cognitive+robots&rft.au=Chengxi+Ye&rft.au=Yezhou+Yang&rft.au=Ren+Mao&rft.au=Fermuller%2C+Cornelia&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=4604&rft.epage=4611&rft_id=info:doi/10.1109%2FICRA.2017.7989535&rft.externalDocID=7989535