Towards Safer Rehabilitation: Improving Gait Trajectory Tracking for Lower Limb Exoskeletons Using Offline Reinforcement Learning

The application of online reinforcement learning (RL) in lower limb exoskeleton control has the potential to improve gait rehabilitation for individuals with impaired mobility. However, online RL approaches require real-time exploration and pose safety risks during training as suboptimal policies ca...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Rehabilitation Robotics Vol. 2025; pp. 577 - 582
Main Authors Sang, Matthew Wong, Narayan, Jyotindra, Omarali, Bukeikhan, Faisal, A. Aldo
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.05.2025
Subjects
Online AccessGet full text
ISSN1945-7901
1945-7901
DOI10.1109/ICORR66766.2025.11063146

Cover

Abstract The application of online reinforcement learning (RL) in lower limb exoskeleton control has the potential to improve gait rehabilitation for individuals with impaired mobility. However, online RL approaches require real-time exploration and pose safety risks during training as suboptimal policies can lead to unstable or unsafe actions being executed by the exoskeleton. This study explores the application of offline RL methods, including Implicit Q-Learning (IQL), Twin Delayed Deep Deterministic Policy Gradient with Behavior Cloning (TD3+BC), and Revisited Behavior Regularized Actor-Critic (ReBRAC), for trajectory control of lower limb exoskeletons using a pre-collected dataset. The transition involved generating a diverse and representative dataset using online RL methods like Proximal Policy Optimization (PPO), which was then utilized to optimize offline RL models with advanced hyperparameter tuning via Optuna. Our results demonstrate improved gait trajectory tracking over a PPO baseline, with our TD3+BC model achieving the best performance. These findings highlight the potential of offline RL to enhance exoskeleton trajectory control while minimizing safety risks inherent in online approaches.
AbstractList The application of online reinforcement learning (RL) in lower limb exoskeleton control has the potential to improve gait rehabilitation for individuals with impaired mobility. However, online RL approaches require real-time exploration and pose safety risks during training as suboptimal policies can lead to unstable or unsafe actions being executed by the exoskeleton. This study explores the application of offline RL methods, including Implicit Q-Learning (IQL), Twin Delayed Deep Deterministic Policy Gradient with Behavior Cloning (TD3+BC), and Revisited Behavior Regularized Actor-Critic (ReBRAC), for trajectory control of lower limb exoskeletons using a pre-collected dataset. The transition involved generating a diverse and representative dataset using online RL methods like Proximal Policy Optimization (PPO), which was then utilized to optimize offline RL models with advanced hyperparameter tuning via Optuna. Our results demonstrate improved gait trajectory tracking over a PPO baseline, with our TD3+BC model achieving the best performance. These findings highlight the potential of offline RL to enhance exoskeleton trajectory control while minimizing safety risks inherent in online approaches.The application of online reinforcement learning (RL) in lower limb exoskeleton control has the potential to improve gait rehabilitation for individuals with impaired mobility. However, online RL approaches require real-time exploration and pose safety risks during training as suboptimal policies can lead to unstable or unsafe actions being executed by the exoskeleton. This study explores the application of offline RL methods, including Implicit Q-Learning (IQL), Twin Delayed Deep Deterministic Policy Gradient with Behavior Cloning (TD3+BC), and Revisited Behavior Regularized Actor-Critic (ReBRAC), for trajectory control of lower limb exoskeletons using a pre-collected dataset. The transition involved generating a diverse and representative dataset using online RL methods like Proximal Policy Optimization (PPO), which was then utilized to optimize offline RL models with advanced hyperparameter tuning via Optuna. Our results demonstrate improved gait trajectory tracking over a PPO baseline, with our TD3+BC model achieving the best performance. These findings highlight the potential of offline RL to enhance exoskeleton trajectory control while minimizing safety risks inherent in online approaches.
The application of online reinforcement learning (RL) in lower limb exoskeleton control has the potential to improve gait rehabilitation for individuals with impaired mobility. However, online RL approaches require real-time exploration and pose safety risks during training as suboptimal policies can lead to unstable or unsafe actions being executed by the exoskeleton. This study explores the application of offline RL methods, including Implicit Q-Learning (IQL), Twin Delayed Deep Deterministic Policy Gradient with Behavior Cloning (TD3+BC), and Revisited Behavior Regularized Actor-Critic (ReBRAC), for trajectory control of lower limb exoskeletons using a pre-collected dataset. The transition involved generating a diverse and representative dataset using online RL methods like Proximal Policy Optimization (PPO), which was then utilized to optimize offline RL models with advanced hyperparameter tuning via Optuna. Our results demonstrate improved gait trajectory tracking over a PPO baseline, with our TD3+BC model achieving the best performance. These findings highlight the potential of offline RL to enhance exoskeleton trajectory control while minimizing safety risks inherent in online approaches.
Author Faisal, A. Aldo
Narayan, Jyotindra
Omarali, Bukeikhan
Sang, Matthew Wong
Author_xml – sequence: 1
  givenname: Matthew Wong
  surname: Sang
  fullname: Sang, Matthew Wong
  organization: Imperial College London,Brain and Behaviour Lab,Department of Bioengineering,UK
– sequence: 2
  givenname: Jyotindra
  surname: Narayan
  fullname: Narayan, Jyotindra
  organization: Universität Bayreuth,Chair in Digital Health,Germany
– sequence: 3
  givenname: Bukeikhan
  surname: Omarali
  fullname: Omarali, Bukeikhan
  organization: Imperial College London,Brain and Behaviour Lab,Department of Computing,UK
– sequence: 4
  givenname: A. Aldo
  surname: Faisal
  fullname: Faisal, A. Aldo
  email: aldo.faisal@imperial.ac.uk
  organization: Imperial College London,Brain and Behaviour Lab,Department of Bioengineering,UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40643995$$D View this record in MEDLINE/PubMed
BookMark eNpNkU1rGzEQhpWSUqep_0EoOubiVB8rrdRbMUlqWDC4ztlI61EiZ1dypXU-jv3n1eKk9DQv8z4zMO98RqchBkAIU3JFKdHfFvPlaiVlLeUVI0yMTclpJU_QVNdacUG4IlKxD-iM6krMak3o6X96gqY57wghlCnJavkJTSoiK661OEN_1vHZpG3Gv4yDhFfwYKzv_GAGH8N3vOj3KT75cI9vjR_wOpkdtENMr6NsH0fDxYSb-FyGG99bfP0S8yN0MMSQ8V0eiaVznQ9QlvtQ6BZ6CANuwKRQ7C_oozNdhulbPUd3N9fr-c9Zs7xdzH80M08rPcysboWGigJnRAslHJWuVOmEMdKWeLRgypLK1M4AOG63WjEr1ZZZqDWT_BxdHveWi34fIA-b3ucWus4EiIe84YxpMaakCvr1DT3YHrabffK9Sa-b99gKcHEEPAD8s98fw_8CckWBKw
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/ICORR66766.2025.11063146
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISBN 9798350380682
EISSN 1945-7901
EndPage 582
ExternalDocumentID 40643995
11063146
Genre orig-research
Journal Article
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-i149t-b9c59e41e3209585f16f9586f5aa6b6679528b04a7faeef3bd982b68d2be79263
IEDL.DBID RIE
ISSN 1945-7901
IngestDate Sat Jul 12 17:30:12 EDT 2025
Sun Jul 13 01:31:32 EDT 2025
Wed Jul 16 07:53:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i149t-b9c59e41e3209585f16f9586f5aa6b6679528b04a7faeef3bd982b68d2be79263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40643995
PQID 3229500018
PQPubID 23479
PageCount 6
ParticipantIDs ieee_primary_11063146
pubmed_primary_40643995
proquest_miscellaneous_3229500018
PublicationCentury 2000
PublicationDate 2025-May
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE International Conference on Rehabilitation Robotics
PublicationTitleAbbrev ICORR
PublicationTitleAlternate IEEE Int Conf Rehabil Robot
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001286276
Score 2.2927966
Snippet The application of online reinforcement learning (RL) in lower limb exoskeleton control has the potential to improve gait rehabilitation for individuals with...
SourceID proquest
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 577
SubjectTerms Adaptation models
Exoskeleton Device
Exoskeletons
Gait - physiology
Humans
Limbs
Lower Extremity - physiology
Real-time systems
Reinforcement, Psychology
Safety
Testing
Training
Trajectory
Trajectory tracking
Tuning
Title Towards Safer Rehabilitation: Improving Gait Trajectory Tracking for Lower Limb Exoskeletons Using Offline Reinforcement Learning
URI https://ieeexplore.ieee.org/document/11063146
https://www.ncbi.nlm.nih.gov/pubmed/40643995
https://www.proquest.com/docview/3229500018
Volume 2025
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66J5-8TZ03Iqhv3da0TVtfx7yhm8wJvo2c9kTmsBPXgfrmP_ckXecFBJ8aKAmh56Tny8l3vjB2GIeuDpvoOUJr7fhahQ6YKhBQEUCEnkAru3jdked3_uV9cD8rVre1MIhoyWdYN017lp-Ok6lJlTUoVEmPlvYiWyQ_K4q1viVUCJyHsmTrNOPGRavb6xkOp6EiiKBedp9dpPI3prSx5XSZdcpZFZSSUX2aQz15_yXY-O9pr7DqVxkfv5kHqFW2gNkaO_quK8z7hagAP-a9H5Ld6-yjbwm1E36raKxfr0_4PBnBz9Qw5xTyHm3-_800E5N_5wSH-ZW5hI1fDZ-At1_HkxEFOQKbE26ZCryrtUG5NLjVb01sqpLPJF8fquzutN1vnTuz-xqcIe2zcgfiJIjRd8nCBNyiQLtS01PqQCkJZIg4EBF5ggq1QtQepHEkQEapAAxjIb0NVsnGGW4xnib0LxEgQEnPT2mbDi6kboBugiHQFrPGquY7D54LSY5B-Ylr7KC06YDWiTn8UBmOp5OBZ-4tN24S1dhmYex5b9_isjjY_mPUHbZkHKjgOe6ySv4yxT3CIjnsWx_8BMIk4HE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5t7IE9AaOwjh_zpLG3lMaJnYRXBCtbKVNXJN4iX3KeClo7rakEe9t_ztlpCkNC2lMsRTlZvnPufP7uO4CPWRLapEtRIK21QWxNEqCrAkGTIqYUSfK0i-cD3buMv1ypq0Wxuq-FISIPPqOOG_q7_HJazF2q7JBdlY54a7-EV-z4Y1WXaz1KqXB4nugGr9PNDs-OL4ZDh-J0YASpOo2ARSuV56NK711O12DQzKsGldx05hV2ij9PKBv_e-Lr0Hoo5BPfli5qA17Q5A0cPGYWFqOaVkB8EsN_SLs34e_IQ2pn4rthWU9eH4llOkJ8NuNKsNO79jcAd25YuAy84IBY9F0bNtEf_0Rxcjud3bCb43BzJjxWQVxY6-JcFu4ZXAufrBQL0tcfLbg8PRkd94JFx4ZgzCetKsCsUBnFIeuYQ7dU2VBbfmqrjNHIisiUTNkWTGINkY2wzFKJOi0lUpJJHW3BymQ6obcgyoL_JhIlGh3FJR_UMcQyVBQWlCAfMtvQcuuc_6pJOfJmidvwodFpzjvFXX-YCU3nszxyncudmaRt2K6Vvfw69pFZpt49I_U9rPZG5_28fzb4ugOvnTHVqMddWKl-z2mPI5MK97093gOj3eO-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Rehabilitation+Robotics&rft.atitle=Towards+Safer+Rehabilitation%3A+Improving+Gait+Trajectory+Tracking+for+Lower+Limb+Exoskeletons+Using+Offline+Reinforcement+Learning&rft.au=Sang%2C+Matthew+Wong&rft.au=Narayan%2C+Jyotindra&rft.au=Omarali%2C+Bukeikhan&rft.au=Faisal%2C+A.+Aldo&rft.date=2025-05-01&rft.pub=IEEE&rft.eissn=1945-7901&rft.spage=577&rft.epage=582&rft_id=info:doi/10.1109%2FICORR66766.2025.11063146&rft.externalDocID=11063146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-7901&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-7901&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-7901&client=summon