Contextual classification with functional Max-Margin Markov Networks

We address the problem of label assignment in computer vision: given a novel 3D or 2D scene, we wish to assign a unique label to every site (voxel, pixel, superpixel, etc.). To this end, the Markov Random Field framework has proven to be a model of choice as it uses contextual information to yield i...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 975 - 982
Main Authors Munoz, Daniel, Bagnell, J Andrew, Vandapel, Nicolas, Hebert, Martial
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We address the problem of label assignment in computer vision: given a novel 3D or 2D scene, we wish to assign a unique label to every site (voxel, pixel, superpixel, etc.). To this end, the Markov Random Field framework has proven to be a model of choice as it uses contextual information to yield improved classification results over locally independent classifiers. In this work we adapt a functional gradient approach for learning high-dimensional parameters of random fields in order to perform discrete, multi-label classification. With this approach we can learn robust models involving high-order interactions better than the previously used learning method. We validate the approach in the context of point cloud classification and improve the state of the art. In addition, we successfully demonstrate the generality of the approach on the challenging vision problem of recovering 3-D geometric surfaces from images.
AbstractList We address the problem of label assignment in computer vision: given a novel 3D or 2D scene, we wish to assign a unique label to every site (voxel, pixel, superpixel, etc.). To this end, the Markov Random Field framework has proven to be a model of choice as it uses contextual information to yield improved classification results over locally independent classifiers. In this work we adapt a functional gradient approach for learning high-dimensional parameters of random fields in order to perform discrete, multi-label classification. With this approach we can learn robust models involving high-order interactions better than the previously used learning method. We validate the approach in the context of point cloud classification and improve the state of the art. In addition, we successfully demonstrate the generality of the approach on the challenging vision problem of recovering 3-D geometric surfaces from images.
Author Bagnell, J Andrew
Vandapel, Nicolas
Munoz, Daniel
Hebert, Martial
Author_xml – sequence: 1
  givenname: Daniel
  surname: Munoz
  fullname: Munoz, Daniel
  email: dmunoz@ri.emu.edu
  organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 2
  givenname: J Andrew
  surname: Bagnell
  fullname: Bagnell, J Andrew
  email: dbagnell@ri.emu.edu
  organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 3
  givenname: Nicolas
  surname: Vandapel
  fullname: Vandapel, Nicolas
  email: vandapel@ri.emu.edu
  organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 4
  givenname: Martial
  surname: Hebert
  fullname: Hebert, Martial
  email: hebert@ri.emu.edu
  organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
BookMark eNpNkMtOwzAURA0Uibb0AxCb_EDCvbbj2EsUykNqASFgWzmODabBQXFKy99TRJFYzRkdaRYzIoPQBkvICUKGCOqsfL5_yCiAynIKIlewRyaqkMgp50wpxH0yRBAsFQrVARn9CUoH_8QRGcX4BkBZQWFILso29HbTr3STmEbH6J03uvdtSNa-f03cKpifttVzvUnnunvxYYvdsv1Mbm2_brtlPCaHTjfRTnY5Jk-X08fyOp3dXd2U57PUI5d9WlFlXc6xYqICgIKhco4KQwukTFqmhZIGaommsnWFHAyrUUtntKyFscjG5PR311trFx-df9fd12L3BvsGTSdRmg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2009.5206590
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781424439911
1424439914
EISSN 1063-6919
EndPage 982
ExternalDocumentID 5206590
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i148t-b29ef541b36b0007319ff26c271238e3a698c0d81cbedb140c3d1a8fca8d6ce13
IEDL.DBID RIE
ISBN 1424439922
9781424439928
ISSN 1063-6919
IngestDate Wed Aug 27 02:43:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i148t-b29ef541b36b0007319ff26c271238e3a698c0d81cbedb140c3d1a8fca8d6ce13
OpenAccessLink https://figshare.com/articles/journal_contribution/Contextual_Classification_with_Functional_Max-Margin_Markov_Networks/6552392
PageCount 8
ParticipantIDs ieee_primary_5206590
PublicationCentury 2000
PublicationDate 2009-June
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-June
PublicationDecade 2000
PublicationTitle 2009 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000453166
ssj0003211698
Score 2.2225306
Snippet We address the problem of label assignment in computer vision: given a novel 3D or 2D scene, we wish to assign a unique label to every site (voxel, pixel,...
SourceID ieee
SourceType Publisher
StartPage 975
SubjectTerms Application software
Boosting
Clouds
Computer vision
Context modeling
Learning systems
Markov random fields
Path planning
Robot vision systems
Robustness
Title Contextual classification with functional Max-Margin Markov Networks
URI https://ieeexplore.ieee.org/document/5206590
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2QkydUMH6nB48u0Ha3tGeUEBMIMWK4ke3HJsRkMbIY4q-303YxGg_etnPZ3XY3M29m3huEbvmAUdBlT4gwAFCYTkSeZknh3JPmOi2oZ71Ppnw8Tx8X2aKB7vZcGGutbz6zXbj0tXyz1ltIlfUyClVAB9APHHALXK19PsWFJozE0ATWzCEbLvcVBQrTWHzlk7OESyJrkpcXZq21n-JaxPIn6cve8GX2FGQt491_jGHxXmjUQpP6-UPzyWt3W6mu_vwl7fjfFzxCnW--H57tPdkxatjyBLVigIrj779xpnoGRG1ro3svb7UDFgrWEIlD65E_bQwpXgx-M6Qb8STfJTBXd1ViYAitP_A09KBvOmg-engejpM4mSFZOfhUJYpKW2QpUYyHYh-RhTtVTQfOEQrLcrfzum8E0coa5TCcZobkotC5MFxbwk5Rs1yX9gxhxWWqDM05LRwU4tatUkKdweSqyKQ4R23Yp-VbEN9Yxi26-Nt8iQ5DuQfSJFeoWb1v7bWLGip14z-XLwpMt_c
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6IHvSECsZve_BogbZbac8oQWWEGDDcyPqxhJiAkWGIv95-bDMaD97W97K0XfZ-PO_zvADcsC4lTpcdYa5dgkIV4mkUo8y6J8VUlBHPek9GbDCNHmfxrAZuKy6MMcY3n5mWe_RYvl6pjSuVtWPiUECboO9avx_jwNaqKio2OKG4CE7cmtrchokKUyBuHovHPhlFTGBR0ry8NGup_lSseQGA4o5o917Gz0HYsnj_j0Es3g_16yApdxDaT15bm1y21Ocvccf_bvEANL8Zf3Bc-bJDUDPLI1AvQlRY_ADW1lROgShtDXDnBa62jocClYvFXfORv2_oirzQec5QcIRJukVusu5iCR1HaPUBR6ELfd0E0_79pDdAxWwGtLAJVI4kESaLIywpC3AfFpm9V0W61hVyQ1N78qqjOVbSaGmzOEU1TnmmUq6ZMpgeg53lamlOAJRMRFKTlJHMJkPM2FWEiTXoVGax4Keg4c5p_hbkN-bFEZ39bb4Ge4NJMpwPH0ZP52A_gD-uaHIBdvL3jbm0MUQur_yn8wXZHrtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Contextual+classification+with+functional+Max-Margin+Markov+Networks&rft.au=Munoz%2C+Daniel&rft.au=Bagnell%2C+J+Andrew&rft.au=Vandapel%2C+Nicolas&rft.au=Hebert%2C+Martial&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=975&rft.epage=982&rft_id=info:doi/10.1109%2FCVPR.2009.5206590&rft.externalDocID=5206590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon