Contextual classification with functional Max-Margin Markov Networks
We address the problem of label assignment in computer vision: given a novel 3D or 2D scene, we wish to assign a unique label to every site (voxel, pixel, superpixel, etc.). To this end, the Markov Random Field framework has proven to be a model of choice as it uses contextual information to yield i...
Saved in:
Published in | 2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 975 - 982 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We address the problem of label assignment in computer vision: given a novel 3D or 2D scene, we wish to assign a unique label to every site (voxel, pixel, superpixel, etc.). To this end, the Markov Random Field framework has proven to be a model of choice as it uses contextual information to yield improved classification results over locally independent classifiers. In this work we adapt a functional gradient approach for learning high-dimensional parameters of random fields in order to perform discrete, multi-label classification. With this approach we can learn robust models involving high-order interactions better than the previously used learning method. We validate the approach in the context of point cloud classification and improve the state of the art. In addition, we successfully demonstrate the generality of the approach on the challenging vision problem of recovering 3-D geometric surfaces from images. |
---|---|
AbstractList | We address the problem of label assignment in computer vision: given a novel 3D or 2D scene, we wish to assign a unique label to every site (voxel, pixel, superpixel, etc.). To this end, the Markov Random Field framework has proven to be a model of choice as it uses contextual information to yield improved classification results over locally independent classifiers. In this work we adapt a functional gradient approach for learning high-dimensional parameters of random fields in order to perform discrete, multi-label classification. With this approach we can learn robust models involving high-order interactions better than the previously used learning method. We validate the approach in the context of point cloud classification and improve the state of the art. In addition, we successfully demonstrate the generality of the approach on the challenging vision problem of recovering 3-D geometric surfaces from images. |
Author | Bagnell, J Andrew Vandapel, Nicolas Munoz, Daniel Hebert, Martial |
Author_xml | – sequence: 1 givenname: Daniel surname: Munoz fullname: Munoz, Daniel email: dmunoz@ri.emu.edu organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 2 givenname: J Andrew surname: Bagnell fullname: Bagnell, J Andrew email: dbagnell@ri.emu.edu organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 3 givenname: Nicolas surname: Vandapel fullname: Vandapel, Nicolas email: vandapel@ri.emu.edu organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 4 givenname: Martial surname: Hebert fullname: Hebert, Martial email: hebert@ri.emu.edu organization: Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA |
BookMark | eNpNkMtOwzAURA0Uibb0AxCb_EDCvbbj2EsUykNqASFgWzmODabBQXFKy99TRJFYzRkdaRYzIoPQBkvICUKGCOqsfL5_yCiAynIKIlewRyaqkMgp50wpxH0yRBAsFQrVARn9CUoH_8QRGcX4BkBZQWFILso29HbTr3STmEbH6J03uvdtSNa-f03cKpifttVzvUnnunvxYYvdsv1Mbm2_brtlPCaHTjfRTnY5Jk-X08fyOp3dXd2U57PUI5d9WlFlXc6xYqICgIKhco4KQwukTFqmhZIGaommsnWFHAyrUUtntKyFscjG5PR311trFx-df9fd12L3BvsGTSdRmg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2009.5206590 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781424439911 1424439914 |
EISSN | 1063-6919 |
EndPage | 982 |
ExternalDocumentID | 5206590 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i148t-b29ef541b36b0007319ff26c271238e3a698c0d81cbedb140c3d1a8fca8d6ce13 |
IEDL.DBID | RIE |
ISBN | 1424439922 9781424439928 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:43:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i148t-b29ef541b36b0007319ff26c271238e3a698c0d81cbedb140c3d1a8fca8d6ce13 |
OpenAccessLink | https://figshare.com/articles/journal_contribution/Contextual_Classification_with_Functional_Max-Margin_Markov_Networks/6552392 |
PageCount | 8 |
ParticipantIDs | ieee_primary_5206590 |
PublicationCentury | 2000 |
PublicationDate | 2009-June |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-June |
PublicationDecade | 2000 |
PublicationTitle | 2009 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0000453166 ssj0003211698 |
Score | 2.2225306 |
Snippet | We address the problem of label assignment in computer vision: given a novel 3D or 2D scene, we wish to assign a unique label to every site (voxel, pixel,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 975 |
SubjectTerms | Application software Boosting Clouds Computer vision Context modeling Learning systems Markov random fields Path planning Robot vision systems Robustness |
Title | Contextual classification with functional Max-Margin Markov Networks |
URI | https://ieeexplore.ieee.org/document/5206590 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2QkydUMH6nB48u0Ha3tGeUEBMIMWK4ke3HJsRkMbIY4q-303YxGg_etnPZ3XY3M29m3huEbvmAUdBlT4gwAFCYTkSeZknh3JPmOi2oZ71Ppnw8Tx8X2aKB7vZcGGutbz6zXbj0tXyz1ltIlfUyClVAB9APHHALXK19PsWFJozE0ATWzCEbLvcVBQrTWHzlk7OESyJrkpcXZq21n-JaxPIn6cve8GX2FGQt491_jGHxXmjUQpP6-UPzyWt3W6mu_vwl7fjfFzxCnW--H57tPdkxatjyBLVigIrj779xpnoGRG1ro3svb7UDFgrWEIlD65E_bQwpXgx-M6Qb8STfJTBXd1ViYAitP_A09KBvOmg-engejpM4mSFZOfhUJYpKW2QpUYyHYh-RhTtVTQfOEQrLcrfzum8E0coa5TCcZobkotC5MFxbwk5Rs1yX9gxhxWWqDM05LRwU4tatUkKdweSqyKQ4R23Yp-VbEN9Yxi26-Nt8iQ5DuQfSJFeoWb1v7bWLGip14z-XLwpMt_c |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6IHvSECsZve_BogbZbac8oQWWEGDDcyPqxhJiAkWGIv95-bDMaD97W97K0XfZ-PO_zvADcsC4lTpcdYa5dgkIV4mkUo8y6J8VUlBHPek9GbDCNHmfxrAZuKy6MMcY3n5mWe_RYvl6pjSuVtWPiUECboO9avx_jwNaqKio2OKG4CE7cmtrchokKUyBuHovHPhlFTGBR0ry8NGup_lSseQGA4o5o917Gz0HYsnj_j0Es3g_16yApdxDaT15bm1y21Ocvccf_bvEANL8Zf3Bc-bJDUDPLI1AvQlRY_ADW1lROgShtDXDnBa62jocClYvFXfORv2_oirzQec5QcIRJukVusu5iCR1HaPUBR6ELfd0E0_79pDdAxWwGtLAJVI4kESaLIywpC3AfFpm9V0W61hVyQ1N78qqjOVbSaGmzOEU1TnmmUq6ZMpgeg53lamlOAJRMRFKTlJHMJkPM2FWEiTXoVGax4Keg4c5p_hbkN-bFEZ39bb4Ge4NJMpwPH0ZP52A_gD-uaHIBdvL3jbm0MUQur_yn8wXZHrtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Contextual+classification+with+functional+Max-Margin+Markov+Networks&rft.au=Munoz%2C+Daniel&rft.au=Bagnell%2C+J+Andrew&rft.au=Vandapel%2C+Nicolas&rft.au=Hebert%2C+Martial&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=975&rft.epage=982&rft_id=info:doi/10.1109%2FCVPR.2009.5206590&rft.externalDocID=5206590 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |