Unsupervised Hybrid Deep Feature Encoder for Robust Feature Learning from Resting-State EEG Data

EEG classification is a challenging task due to the nonstationary nature of EEG data and the covariance shift induced by cross-subject variance. Recently, various machine learning and deep learning models have been developed to learn robust features for inter-subject EEG classification tasks. Howeve...

Full description

Saved in:
Bibliographic Details
Published in2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2024; pp. 1 - 5
Main Authors Yue, Yuan, Deng, Jeremiah D., Chakraborti, Tapabrata, De Ridder, Dirk, Manning, Patrick
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract EEG classification is a challenging task due to the nonstationary nature of EEG data and the covariance shift induced by cross-subject variance. Recently, various machine learning and deep learning models have been developed to learn robust features for inter-subject EEG classification tasks. However, current existing models are designed based on active task-related EEG, with a lack of investigation into learning robust feature representation from resting-state EEG data. Given the differences in the nature of brain activities captured by resting-state and active task-related EEG, existing models might not be applicable to resting-state EEG. This study proposed an unsupervised hybrid deep feature encoder to learn robust feature representation in resting-state EEG data. It involves using a Variational Autoencoder (VAE) to learn latent feature representation, followed by a further feature selection conducted through a non-task-related sample-level proximity classification using K-means clustering. We demonstrate the efficiency of our proposed model through significantly improved classification accuracies compared to benchmark models, as well as the high between-subject separability manifested by the learned feature representation.
AbstractList EEG classification is a challenging task due to the nonstationary nature of EEG data and the covariance shift induced by cross-subject variance. Recently, various machine learning and deep learning models have been developed to learn robust features for inter-subject EEG classification tasks. However, current existing models are designed based on active task-related EEG, with a lack of investigation into learning robust feature representation from resting-state EEG data. Given the differences in the nature of brain activities captured by resting-state and active task-related EEG, existing models might not be applicable to resting-state EEG. This study proposed an unsupervised hybrid deep feature encoder to learn robust feature representation in resting-state EEG data. It involves using a Variational Autoencoder (VAE) to learn latent feature representation, followed by a further feature selection conducted through a non-task-related sample-level proximity classification using K-means clustering. We demonstrate the efficiency of our proposed model through significantly improved classification accuracies compared to benchmark models, as well as the high between-subject separability manifested by the learned feature representation.
Author Deng, Jeremiah D.
De Ridder, Dirk
Manning, Patrick
Yue, Yuan
Chakraborti, Tapabrata
Author_xml – sequence: 1
  givenname: Yuan
  surname: Yue
  fullname: Yue, Yuan
  email: yueyu445@student.otago.ac.nz
  organization: University of Otago,School of Computing,Dunedin,New Zealand
– sequence: 2
  givenname: Jeremiah D.
  surname: Deng
  fullname: Deng, Jeremiah D.
  email: jeremiah.deng@otago.ac.nz
  organization: University of Otago,School of Computing,Dunedin,New Zealand
– sequence: 3
  givenname: Tapabrata
  surname: Chakraborti
  fullname: Chakraborti, Tapabrata
  email: t.chakraborty@ucl.ac.uk
  organization: Alan Turing Institute and University College London,London,United Kingdom
– sequence: 4
  givenname: Dirk
  surname: De Ridder
  fullname: De Ridder, Dirk
  email: dirk.deridder@otago.ac.nz
  organization: University of Otago,Department of Surgical Science,Dunedin,New Zealand
– sequence: 5
  givenname: Patrick
  surname: Manning
  fullname: Manning, Patrick
  email: patrick.manning@otago.ac.nz
  organization: University of Otago,Department of Medicine,Dunedin,New Zealand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40039110$$D View this record in MEDLINE/PubMed
BookMark eNo9kFFLwzAUhaMobs79A9H8gdakSZrmUbduEybCnM_zprmRgmtL2gr79xbm9nIPl_PdA_fckquqrpCQR85izpl5yt9eZkpwlsUJS2TMmc64lvyCTI02mVBMaC6NuSTjJDUyYimTIzJt29IyJZRUJhE3ZCQZE2bIG5Ovz6rtGwy_ZYuOrg42lI7OERu6QOj6gDSvitphoL4OdFPbvu3O1hohVGX1TX2o93SDbTcs0UcH3XCWL-kcOrgj1x5-Wpz-64RsF_l2torW78vX2fM6KrnUXYTAGFhvhpmqTHqhgBsQoihkahE8KnRWC144DcKBEtYg8854A4k2VkzIwzG26e0e3a4J5R7CYXf6dADuj0CJiGf71J_4A07AZLc
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/EMBC53108.2024.10781741
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350371499
EISSN 2694-0604
EndPage 5
ExternalDocumentID 40039110
10781741
Genre orig-research
Journal Article
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-i147t-ea00abf900a6584f35a19a33cc46beafe5edb731cd7a3da53b9e0fd9f9a279b3
IEDL.DBID RIE
IngestDate Mon May 12 02:38:35 EDT 2025
Wed Aug 27 02:32:19 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i147t-ea00abf900a6584f35a19a33cc46beafe5edb731cd7a3da53b9e0fd9f9a279b3
PMID 40039110
PageCount 5
ParticipantIDs pubmed_primary_40039110
ieee_primary_10781741
PublicationCentury 2000
PublicationDate 2024-Jul
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Annu Int Conf IEEE Eng Med Biol Soc
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib053545923
ssib042469959
Score 1.8774625
Snippet EEG classification is a challenging task due to the nonstationary nature of EEG data and the covariance shift induced by cross-subject variance. Recently,...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Benchmark testing
Biological system modeling
Brain - physiology
Brain modeling
Cluster Analysis
Data models
Deep Learning
Electroencephalography
Electroencephalography - methods
Engineering in medicine and biology
Feature Encoder
Feature extraction
Feature Selection
Humans
Machine Learning
Representation learning
Rest - physiology
Resting-state EEG classification
Signal Processing, Computer-Assisted
Unsupervised Machine Learning
Variational Autoencoder
Title Unsupervised Hybrid Deep Feature Encoder for Robust Feature Learning from Resting-State EEG Data
URI https://ieeexplore.ieee.org/document/10781741
https://www.ncbi.nlm.nih.gov/pubmed/40039110
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pa8IwFA7T007bmNvcD8lh13StSW1zndbJQBFR8ObyqzIGVbQ9bH_9XtLWDWGwSymEhPDymve95n1fEHpkcSAohFkCWEASFqYxicFPCO_ZDhFgdt8SnMeT3mjBXpfhsiKrOy6MMcYVnxnPvrqzfL1Rhf1VBl94FAOChmSnAZlbSdaqnYd1IdH7JZQSUsAGgF6qmq7A50_J-LkPLufbiq4u8-rRqntVjnCliy_DMzSpZ1aWlXx4RS499XUk2vjvqZ-j1g-VD08PQeoCnZjsEr0tsn2xtbvE3mg8-rSsLTwwZostIix2BieZ5brvMEBaPNvIYp8fmipF1jW2zBQ8syod2Zo40IqT5AUPRC5aaD5M5v0Rqa5aIO8Bi3JihO8LmXJ4WkiS0lAEXFCqFINFE6kJjZYRDZSOBNUipJIbP9U85aIbcUmvUDPbZOYGYSFgTxAyhERMMSUhH9I60BAghYIRlWqjlrXOaluKaaxqw7TRdWn-Qwtz6vWBf_tHjzt0atexrJ29R818V5gHQAi57KDGZDruOP_4Boewufg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD3pScer8zMFra7Oka3N1q1bdhowNdpv56hChG1t70L_el35MGQheSiFNCC-veb_Xvt8vCN2ykAgKYdYBLCAd5iehE4KfOLxjOwSA2T1LcB4MO_GEPU_9aUVWL7gwxpii-My49rb4l68XKrefyuAND0JA0JDs7ELg90lJ16rdh7Uh1fslleJTeAjwS1XVRTx-Fw3uu-B0nq3pajO3Hq86WWULWRYR5uEADeu5lYUlH26eSVd9bck2_nvyh6j5Q-bDr5swdYR2THqM3ibpOl_afWJtNI4_LW8L94xZYosJ85XBUWrZ7isMoBaPFjJfZ5umSpN1ji03BY-sTkc6dwrYiqPoEfdEJppo_BCNu7FTHbbgvBMWZI4RnidkwuFqQUlCfUG4oFQpBssmEuMbLQNKlA4E1cKnkhsv0Tzhoh1wSU9QI12k5gxhIWBXENKHVEwxJSEj0ppoCJFCwYhKtVDTWme2LOU0ZrVhWui0NP-mhRX69cQ7_6PHDdqLx4P-rP80fLlA-3ZNy0raS9TIVrm5AryQyevCS74BApW8NQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+46th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society+%28EMBC%29&rft.atitle=Unsupervised+Hybrid+Deep+Feature+Encoder+for+Robust+Feature+Learning+from+Resting-State+EEG+Data&rft.au=Yue%2C+Yuan&rft.au=Deng%2C+Jeremiah+D.&rft.au=Chakraborti%2C+Tapabrata&rft.au=De+Ridder%2C+Dirk&rft.date=2024-07-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FEMBC53108.2024.10781741&rft.externalDocID=10781741