Deep Learning Method for Estimating Germ-layer Regions of Early Differentiated Human Induced Pluripotent Stem Cells on Micropattern Using Bright-field Microscopy Image

Live cell staining is expensive and may bring potential safety issues in downstream clinical applications, bright-field images rather than staining images should be more suitable to reveal time-series changes of differentiating hiPSCs (human induced pluripotent stem cells) and three-germ layers diff...

Full description

Saved in:
Bibliographic Details
Published in2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2024; pp. 1 - 4
Main Authors Chu, Slo-Li, Yokota, Hideo, Wang, Pai-Ting, Abe, Kuniya, Hayashi, Yohei, Cho, Dooseon, Tsai, Ming- Dar
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.07.2024
Subjects
Online AccessGet full text
ISSN2694-0604
DOI10.1109/EMBC53108.2024.10782655

Cover

Abstract Live cell staining is expensive and may bring potential safety issues in downstream clinical applications, bright-field images rather than staining images should be more suitable to reveal time-series changes of differentiating hiPSCs (human induced pluripotent stem cells) and three-germ layers differentiated from the hiPSCs. This study proposed a deep learning method for estimating immunofluorescence regions on a bright-field microscopy images. The networks trained by multiple types of fluorescence images can estimate the types of fluorescence images from a bright-field image. The estimated pseudo Hoechst image is used to segment hiPSCs, and the others classify the segmented hiPSCs as respective germ-layer cells. The experimental results show over 75% correct rates for the segmentation and classification were achieved, indicating the proposed method can be useful tool in evaluating pluripotency of hiPSC and delineating the germ layer formation process without cell staining.
AbstractList Live cell staining is expensive and may bring potential safety issues in downstream clinical applications, bright-field images rather than staining images should be more suitable to reveal time-series changes of differentiating hiPSCs (human induced pluripotent stem cells) and three-germ layers differentiated from the hiPSCs. This study proposed a deep learning method for estimating immunofluorescence regions on a bright-field microscopy images. The networks trained by multiple types of fluorescence images can estimate the types of fluorescence images from a bright-field image. The estimated pseudo Hoechst image is used to segment hiPSCs, and the others classify the segmented hiPSCs as respective germ-layer cells. The experimental results show over 75% correct rates for the segmentation and classification were achieved, indicating the proposed method can be useful tool in evaluating pluripotency of hiPSC and delineating the germ layer formation process without cell staining.
Author Chu, Slo-Li
Tsai, Ming- Dar
Abe, Kuniya
Cho, Dooseon
Hayashi, Yohei
Yokota, Hideo
Wang, Pai-Ting
Author_xml – sequence: 1
  givenname: Slo-Li
  surname: Chu
  fullname: Chu, Slo-Li
  email: slchu@cycu.edu.tw
  organization: Chung Yuan Christian University,Department of Information and Computer Engineering,Taoyuan,Taiwan
– sequence: 2
  givenname: Hideo
  surname: Yokota
  fullname: Yokota, Hideo
  email: hyokota@riken.jp
  organization: Center for Advanced Photonics,RIKEN,Wako,Japan
– sequence: 3
  givenname: Pai-Ting
  surname: Wang
  fullname: Wang, Pai-Ting
  email: s41029510802@gmail.com
  organization: Chung Yuan Christian University,Department of Information and Computer Engineering,Taoyuan,Taiwan
– sequence: 4
  givenname: Kuniya
  surname: Abe
  fullname: Abe, Kuniya
  email: kuniya.abe@riken.jp
  organization: BioResource Research Center,RIKEN,Tsukuba,Japan
– sequence: 5
  givenname: Yohei
  surname: Hayashi
  fullname: Hayashi, Yohei
  email: yohei.hayashi@riken.jp
  organization: BioResource Research Center,RIKEN,Tsukuba,Japan
– sequence: 6
  givenname: Dooseon
  surname: Cho
  fullname: Cho, Dooseon
  email: dooseon.cho@riken.jp
  organization: BioResource Research Center,RIKEN,Tsukuba,Japan
– sequence: 7
  givenname: Ming- Dar
  surname: Tsai
  fullname: Tsai, Ming- Dar
  email: mingdar@cycu.edu.tw
  organization: Chung Yuan Christian University,Department of Information and Computer Engineering,Taoyuan,Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40039597$$D View this record in MEDLINE/PubMed
BookMark eNo9kU1OwzAQhQ0CQSm9AQJfIMW_SbykP7SVWoGAriunHreWEidy3EVPxDVJVWA1mvnezJPe3KErX3tA6ImSIaVEPU9Xo7HklORDRpgYUpLlLJXyAg1UpnIuCc-oUOoS9ViqREJSIm7RoG1dQSSXQirGb9CtIIQrqbIe-p4ANHgJOnjnd3gFcV8bbOuAp210lY6n6QxClZT6CAF_wM7VvsW1xVMdyiOeOGshgI9ORzB4fqi0xwtvDtuuey8PwTV17DD-jFDhMZRlt-zxym1D3egYIXi8bk8uo-B2-5hYB6U583ZbN0e8qPQO7tG11WULg9_aR-vX6dd4nizfZovxyzJxVGQxMVwypk3GmCoIS3WxtSlhVEFOGTNUUA2FpURoWaTaam0UzXmuKC04kbLgvI8ez3ebQ1GB2TShCyEcN3-JdYKHs8ABwD_--wP_AX2NfmM
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/EMBC53108.2024.10782655
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350371499
EISSN 2694-0604
EndPage 4
ExternalDocumentID 40039597
10782655
Genre orig-research
Journal Article
GrantInformation_xml – fundername: RIKEN
  funderid: 10.13039/501100006264
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-i147t-d3522ad7229b026abcf60219e8122d141aebf104a5b6afaad91838911b3055b33
IEDL.DBID RIE
IngestDate Mon May 12 02:38:35 EDT 2025
Wed Aug 27 02:32:19 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i147t-d3522ad7229b026abcf60219e8122d141aebf104a5b6afaad91838911b3055b33
PMID 40039597
PageCount 4
ParticipantIDs ieee_primary_10782655
pubmed_primary_40039597
PublicationCentury 2000
PublicationDate 2024-Jul
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Annu Int Conf IEEE Eng Med Biol Soc
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib053545923
ssib042469959
Score 1.8766835
Snippet Live cell staining is expensive and may bring potential safety issues in downstream clinical applications, bright-field images rather than staining images...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Cell Differentiation
CNN
Convolution
Deep Learning
Engineering in medicine and biology
Estimation
Germ Layers - cytology
human induced pluripotent stem cell differentiations
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Immunofluorescence
Induced Pluripotent Stem Cells - cytology
micropattern microscopy images
Microscopy - methods
Safety
Stem cells
Visualization
Title Deep Learning Method for Estimating Germ-layer Regions of Early Differentiated Human Induced Pluripotent Stem Cells on Micropattern Using Bright-field Microscopy Image
URI https://ieeexplore.ieee.org/document/10782655
https://www.ncbi.nlm.nih.gov/pubmed/40039597
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVoT5wAUaAs1Ry4ujSJs_jajYKUqgIq9VbZiY0QaVpBeoAf4jcZO2lBlZC4JbEcRc545k3y5g0h19xNQi6YTx1HMGoUsKjQnYjqSPMUIyBGUFONHI-D0ZTdz_xZVaxua2GUUpZ8ptrm0P7LT5fJ2nwqwx2O8Szw_RqpoZ2VxVob42EuJnq_hFJ8D7EBopeK0-V0-M0g7vbQ5DqG0eWy9uZuVV-VHVxp48vwgIw3T1bSSl7b60K2k88d0cZ_P_ohafyU8sFkG6SOyJ7Kj8lXX6kVVNKqzxDbLtKA8BUGuOMNhsWrt-izaSYQksODMqzld1hqsILI0K_aqqB7QMQK9k8AmC4gCZ5NsjV6oiWC8QIeC7WAnsoynJxDbNh_K6vomYMlK0DXfh2glkhXjps6mQ-4W6Cja5DpcPDUG9GqYwN9cVhY0NTAOZGGrsslJndCJjpAEMEVwgg3dZgjlNSYAApfBkILkXL0KBH6W2mEx6TnnZB6vszVGYHIS5jJzaTvCaaVz70kRDTKNQ8k10I3ScOs8nxVinLMNwvcJKfla9yOMFN_jHnT-R8zLsi-sYeSg3tJ6sXbWl0h0ihki9TGk7hl7ewbGJzTQA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54HOAEiAHj6QPXjLVNuubKHoxHJwRD4jYlbYIQWzdBd4A_xN_ESVtAk5C4tU1TRaljf04-24ScCj9pCck49TzJqM2ARaVpRtRERqRoAdGC2mjkeBD2H9jVI38sg9VdLIzW2pHPdMNeurP8dJrM7VYZrnC0ZyHny2QVDT_jRbhWJT7MR1fvV6oUHuAriF9KVpfXFGfd-LyNQte0nC6fNarvlZVVFpClszC9DTKoxlYQS14a81w1ko-FtI3_Hvwmqf0E88Htt5naIks62yafHa1nUCZXfYLY1ZEGBLDQxTVvUSw-vUCtTccSQTncactbfoOpAZcSGTplYRVUEIhZwZ0FgK0DkuDd7XiOumiKcDyH-1xPoK3HY-ycQWz5fzOX0zMDR1eAc7c_QB2Vrmi3kTLvcDlBVVcjD73usN2nZc0G-uyxVk5TC-hk2vJ9odC9kyoxIcIIoRFI-KnHPKmVQRdQchVKI2UqUKdEqHGVTT2mgmCHrGTTTO8RiIKEWe9M8UAyo7kIkhbiUWFEqISRpk5qdpZHsyItx6ia4DrZLX7jdwuzEcjoOe3_0eOErPWH8c3o5nJwfUDWrWwUjNxDspK_zvUR4o5cHTtp-wJQItWB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+46th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society+%28EMBC%29&rft.atitle=Deep+Learning+Method+for+Estimating+Germ-layer+Regions+of+Early+Differentiated+Human+Induced+Pluripotent+Stem+Cells+on+Micropattern+Using+Bright-field+Microscopy+Image&rft.au=Chu%2C+Slo-Li&rft.au=Yokota%2C+Hideo&rft.au=Wang%2C+Pai-Ting&rft.au=Abe%2C+Kuniya&rft.date=2024-07-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FEMBC53108.2024.10782655&rft.externalDocID=10782655