Classification of satellite cloud imagery based on multi-feature texture analysis and neural networks
The aim of this work was to develop a system based on modular neural networks and multi-feature texture analysis that facilitates the automated interpretation of cloud images. This speeds up the interpretation process and provides continuity in the application of satellite imagery for weather foreca...
Saved in:
Published in | Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205) Vol. 1; pp. 497 - 500 vol.1 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this work was to develop a system based on modular neural networks and multi-feature texture analysis that facilitates the automated interpretation of cloud images. This speeds up the interpretation process and provides continuity in the application of satellite imagery for weather forecasting. A series of infrared satellite images from the geostationary satellite METEOSAT7 were employed. Nine different texture feature sets (a total of 55 features) were extracted from the segmented cloud images using the following algorithms: first order statistics, spatial gray level dependence matrices, gray level difference statistics, neighborhood gray tone difference matrix, statistical feature matrix, Laws texture energy measures, fractals and Fourier power spectrum. The neural network SOFM (self organising feature map) classifier and the statistical KNN (Kohonen neural network) classifier were used for the classification of the cloud images. Furthermore, the classification results of the different feature sets were combined improving the classification yield to 91%. |
---|---|
AbstractList | The aim of this work was to develop a system based on modular neural networks and multi-feature texture analysis that facilitates the automated interpretation of cloud images. This speeds up the interpretation process and provides continuity in the application of satellite imagery for weather forecasting. A series of infrared satellite images from the geostationary satellite METEOSAT7 were employed. Nine different texture feature sets (a total of 55 features) were extracted from the segmented cloud images using the following algorithms: first order statistics, spatial gray level dependence matrices, gray level difference statistics, neighborhood gray tone difference matrix, statistical feature matrix, Laws texture energy measures, fractals and Fourier power spectrum. The neural network SOFM (self organising feature map) classifier and the statistical KNN (Kohonen neural network) classifier were used for the classification of the cloud images. Furthermore, the classification results of the different feature sets were combined improving the classification yield to 91%. |
Author | Pattichis, C.S. Michaelides, S.C. Kyriakou, K. Christodoulou, C.I. |
Author_xml | – sequence: 1 givenname: C.I. surname: Christodoulou fullname: Christodoulou, C.I. organization: Dept. of Comput. Sci., Univ. of Cyprus, Cyprus – sequence: 2 givenname: S.C. surname: Michaelides fullname: Michaelides, S.C. – sequence: 3 givenname: C.S. surname: Pattichis fullname: Pattichis, C.S. – sequence: 4 givenname: K. surname: Kyriakou fullname: Kyriakou, K. |
BookMark | eNotkE9LxDAUxAMq6K57F0_5Aq3507TpUYq6Cwt60PPykrxINNtKk6L99hbXufwewzA8ZkXO-6FHQm44Kzln7d2u272UgjFetqpltTgjK9ZoJutGKH5JNil9sEWVqhbrimAXIaXgg4Uchp4OnibIGGPISG0cJkfDEd5xnKmBhI4umeMUcyg8Qp5GpBl__gg9xDmFtByO9jiNEBfk72H8TNfkwkNMuPnnmrw9Prx222L__LTr7vdF4FWdC6Ok4dZaz7nWtrGVV8CEllZrbA0XUjRGS8eUcw6EaqWz2gA3nunK1N7LNbk99QZEPHyNy-vjfDgNIX8BZi5YUw |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2001.959062 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EndPage | 500 vol.1 |
ExternalDocumentID | 959062 |
GroupedDBID | 6IE 6IH 6IK 6IL AAJGR AAVQY ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i146t-b53b1cccf1188c7c4f5a0283c88e9b12327b83d05ddda2593dc8ba1bf084b6ff3 |
IEDL.DBID | RIE |
ISBN | 0780367251 9780780367258 |
IngestDate | Wed Jun 26 19:22:59 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i146t-b53b1cccf1188c7c4f5a0283c88e9b12327b83d05ddda2593dc8ba1bf084b6ff3 |
OpenAccessLink | https://zenodo.org/records/2566024/files/Classification%20of%20Satellite%20Cloud%20Imagery%20Based%20on%20MultiFeature%20Texture%20Analysis%20and%20Neural%20Networks.pdf |
ParticipantIDs | ieee_primary_959062 |
PublicationCentury | 2000 |
PublicationDate | 20010000 |
PublicationDateYYYYMMDD | 2001-01-01 |
PublicationDate_xml | – year: 2001 text: 20010000 |
PublicationDecade | 2000 |
PublicationTitle | Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2001 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000454367 |
Score | 1.5012228 |
Snippet | The aim of this work was to develop a system based on modular neural networks and multi-feature texture analysis that facilitates the automated interpretation... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 497 |
SubjectTerms | Clouds Feature extraction Image analysis Image segmentation Image texture analysis Infrared imaging Neural networks Satellites Statistics Weather forecasting |
Title | Classification of satellite cloud imagery based on multi-feature texture analysis and neural networks |
URI | https://ieeexplore.ieee.org/document/959062 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeD22kndU78TQ5e27VL2qbn4ZiCsoOD3UZ-wnCu4tqD_vW-l3QTxYNQSFpKKUnIey_5vk8IuXWKO51a8Nwgyom4kiqSjLEITF1mdMqs9lnvj0_5dM4fFtmi5Wz7XBhrrRef2Rirfi_fVLrBpbJhmSFVt0M6RVmGVK39cgqS5Fhe-MBcwKxcgN1u-Tq7e7HbpUzK4f34fobBYRqHb_44W8WblslhyNneeiIhKkpe4qZWsf78xWv8518fkcF3Dh-d7a3TMTmwmz7poW8Z0MwnxPoDMVEq5HuHVo5upQd01pbqddUYunpFxMUHRVtnKLzj9YeRsx4HSlE1gqVsySZQMRQJmXINhdeXbwdkPrl7Hk-j9tSFaAWzZh2pjKlUa-0g9BC60NxlEp0QLYQtFXpghRLMJJkxRkLwxIwWSqbKJYKr3Dl2SrqbamPPCE0U9HtmuLBCczMqpBTQ-qOcca0kDIRz0sfmWr4FsMYytNTFn08vSS_Iv_C6It36vbHX4A_U6saPhC8tzLSM |
link.rule.ids | 310,311,783,787,792,793,799,4057,4058,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcbxYOeVMT42x68bjDabeVMJKBAOEDCjfRnQkRmZDvoX-973cBoPJgsabcsy9I2fe-13_cpIQ9OcacjC54bRDkBV1IFkjEWgKmLjY6Y1T7rfTRO-jP-NI_nFWfb58JYa734zIZY9Xv5JtMFLpU1OzFSdffJAbjVIimTtXYLKsiSY0nqQ3MB83IKlrsi7GzvxXafstVpDrqDCYaHUVh-9cfpKt649I7LrO2NZxKipuQlLHIV6s9fxMZ__vcJaXxn8dHJzj6dkj27rpMj9C5LOPMZsf5ITBQL-f6hmaMb6RGduaV6lRWGLl8RcvFB0doZCu94BWLgrAeCUtSNYCkrtglUDEVGplxB4RXmmwaZ9R6n3X5QnbsQLGHezAMVMxVprR0EH0KnmrtYohuihbAdhT5YqgQzrdgYIyF8YkYLJSPlWoKrxDl2TmrrbG0vCG0p6PnYcGGF5qadSimg9dsJ41pJGAqXpI7NtXgr0RqLsqWu_nx6Tw7709FwMRyMn6_JUSkGw-uG1PL3wt6Cd5CrOz8qvgDMfLfX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+2001+International+Conference+on+Image+Processing+%28Cat.+No.01CH37205%29&rft.atitle=Classification+of+satellite+cloud+imagery+based+on+multi-feature+texture+analysis+and+neural+networks&rft.au=Christodoulou%2C+C.I.&rft.au=Michaelides%2C+S.C.&rft.au=Pattichis%2C+C.S.&rft.au=Kyriakou%2C+K.&rft.date=2001-01-01&rft.pub=IEEE&rft.isbn=9780780367258&rft.volume=1&rft.spage=497&rft.epage=500+vol.1&rft_id=info:doi/10.1109%2FICIP.2001.959062&rft.externalDocID=959062 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780367258/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780367258/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780367258/sc.gif&client=summon&freeimage=true |