Modeling Unreliable Data and Sensors Using Event Log Performance and F-Measure Attribute Selection

The baseline discrete parameters capture only the sensor ranges, making event prediction function hard to train with a Gaussian density function, without specific temporal understanding of the datasets. The dynamic features present in a sequence of patterns are localized and used to predict events,...

Full description

Saved in:
Bibliographic Details
Published inIntelligent Sensor Networks pp. 31 - 53
Main Authors Iyer, Vasanth, Iyengar, S. Sitharama, Pissinou, Niki
Format Book Chapter
LanguageEnglish
Published CRC Press 2013
Edition1
Subjects
Online AccessGet full text
ISBN1138199745
9781439892817
1439892814
9781138199743
DOI10.1201/b14300-3

Cover

Abstract The baseline discrete parameters capture only the sensor ranges, making event prediction function hard to train with a Gaussian density function, without specific temporal understanding of the datasets. The dynamic features present in a sequence of patterns are localized and used to predict events, which otherwise may be an attributing feature to the static data mining algorithm. The machine learning repository provides collection of supervised databases that are used for the empirical analysis of event prediction algorithms with unsupervised datasets from distributed wireless sensor networks. A measure which combines precision and recall for a small dataset is F-measure and is the weighted harmonic mean of precision and relevance. The availability of such a system is expected to allow more flexible modeling approaches and much more rapid model turnaround for exploratory analysis. From statistical point of view, if the attributes have similar values then it creates high bias creating what is called over-fitting error during learning.
AbstractList The baseline discrete parameters capture only the sensor ranges, making event prediction function hard to train with a Gaussian density function, without specific temporal understanding of the datasets. The dynamic features present in a sequence of patterns are localized and used to predict events, which otherwise may be an attributing feature to the static data mining algorithm. The machine learning repository provides collection of supervised databases that are used for the empirical analysis of event prediction algorithms with unsupervised datasets from distributed wireless sensor networks. A measure which combines precision and recall for a small dataset is F-measure and is the weighted harmonic mean of precision and relevance. The availability of such a system is expected to allow more flexible modeling approaches and much more rapid model turnaround for exploratory analysis. From statistical point of view, if the attributes have similar values then it creates high bias creating what is called over-fitting error during learning.
Author Iyer, Vasanth
Pissinou, Niki
Iyengar, S. Sitharama
Author_xml – sequence: 1
  givenname: Vasanth
  surname: Iyer
  fullname: Iyer, Vasanth
– sequence: 2
  givenname: S. Sitharama
  surname: Iyengar
  fullname: Iyengar, S. Sitharama
– sequence: 3
  givenname: Niki
  surname: Pissinou
  fullname: Pissinou, Niki
BookMark eNotj8tKBDEURCMq6IwNfkIv3Lbem4dJdso4PmDEhc46JJ1Egm0CyaD497aMq6oDRcFZkKNcciDkHOESKeCVQ84ABnZAOi3VDFppqig_JAtEplBrycUJ6VpLDgQTFJTQp-Tiufgwpfzeb3Odi3VT6O_szvY2-_415FZqOyPH0U4tdP-5JNv79dvqcdi8PDytbjdDQk53g_IahdWCRuavAYGCcIJxCdJbGSTTUeugBMSZqEMaIYAbgc-jkY4e2ZLc7H9TjqV-2u9SJ2929mcqNVabx9RcKR_NIJg_abOXNsx8hdpSyZT9ApHlTTI
ContentType Book Chapter
Copyright 2013 by Taylor & Francis Group, LLC
Copyright_xml – notice: 2013 by Taylor & Francis Group, LLC
DOI 10.1201/b14300-3
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Modeling Unreliable Data and Sensors
EISBN 9781439892824
1466589159
9780429066962
9781466589155
0429066961
1439892822
9781466589148
1466589140
Edition 1
Editor Hao, Qi
Hu, Fei
Editor_xml – sequence: 1
  givenname: Fei
  surname: Hu
  fullname: Hu, Fei
– sequence: 2
  givenname: Qi
  surname: Hao
  fullname: Hao, Qi
EndPage 53
ExternalDocumentID 10_1201_b14300_3_version2
GroupedDBID 089
20A
38.
5~G
A4J
AABBV
AALIM
ABEQL
ACBYE
ADTEY
ADYHE
AFWCW
AFXGA
AGOQD
AGWHU
AHEBD
AHTWU
AKSCQ
ALKVF
ALMA_UNASSIGNED_HOLDINGS
ALYTH
ATPON
AZZ
BBABE
BMO
BQVRA
CZZ
EBATF
EIXGO
GEO
INALI
JG1
JJU
JTX
MYL
NEQ
OHILO
OODEK
OXWLL
TTQNR
WZT
ID FETCH-LOGICAL-i142t-8d915a952f3d6010205b534707da7e739f99e850fa7e2b12f0e0bc04b53c2cd13
ISBN 1138199745
9781439892817
1439892814
9781138199743
IngestDate Fri Mar 28 04:24:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Bayes Net
Small Fires
Sensor Networks
Major Fire Events
Forest Fire Event
SVM Classifier
Wireless Sensor Networks
Attribute Selection
Bell Shape Curve
Fire Events
Fire Activity
Bayes Network
Ranking Function
Distributed Kalman Filtering
Training Samples Collection
Burnt Area
Sensor Measurements
Cognitive Wireless Sensor Networks
Intelligent Sensor Networks
FWI
Gaussian Density Function
Weather Data
Large Fires
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i142t-8d915a952f3d6010205b534707da7e739f99e850fa7e2b12f0e0bc04b53c2cd13
PageCount 23
ParticipantIDs informaworld_taylorfrancisbooks_10_1201_b14300_3_version2
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationSubtitle The Integration of Sensor Networks, Signal Processing and Machine Learning
PublicationTitle Intelligent Sensor Networks
PublicationYear 2013
Publisher CRC Press
Publisher_xml – name: CRC Press
SSID ssib053520859
ssib036837809
ssj0000856314
ssib056783830
ssib027107258
ssib058156596
Score 1.4073164
Snippet The baseline discrete parameters capture only the sensor ranges, making event prediction function hard to train with a Gaussian density function, without...
SourceID informaworld
SourceType Publisher
StartPage 31
Subtitle Using Event Log Performance and F-Measure Attribute Selection
Title Modeling Unreliable Data and Sensors
URI https://www.taylorfrancis.com/books/9780429066962/chapters/10.1201/b14300-3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELba7aX00pYioAXlwK3KNrHjOD6iZdEW1IdYttpbFCcOTUFZqRsqwa9nxs4T2gP0EiVeJ7L92eMZ78w3hBx4SUYpqB1umPvSDSLKXKWz3OWJH1ABTVcRxg5_-RrOFsHJki-7lJcmuqRS4_T2r3ElT0EVygBXjJJ9BLLtR6EA7gFfuALCcL2n_A6PWVt3QUumWcGKL9crE72Lflatmvz5xgLyI1nDAP7sFZcX1rF6Pv44Lyokbe7k83fAoihX13aiXBb9WYWp00wA-wJadVWYuKujpEqsB6hpxeAgAZM6DA4SJmeTgduHtTB9H006MDpYT8rVctvul5br94EkpiYDgAJ1zANB3-02rQ8gWh9QKbZVYhb_sQeEsJ8-F1EwIi8Op_PTb41woKAKCdr9hctCpMLvuMeQpgbJ2tpn2IXB-m6FEUdaHF5zC_6yDnohM2m_2j5yE_nHZCRp5Ac1IVg7AA1BWP27qKmMoQ-fmm7e47vtaSrnr8krjF5xMKwEhuENeabLt2Sjxzq5SQ4aEJ0ORAdBdABEpwbxHVkcT88nM7dOluEWsKoqN8qkzxPJac4yNLKpxxVngfBElggtmMyl1BH3cniiyqe5pz2VegFUSmma-WyLjMpVqbeJI2gCSjNTVFIeZFqokLEoDXMdZqDuSr1DZL-XcWXOlnKbCAbXwzr-J7i7__Hue_Kym7cfyKj6fa33QCWs1H49We4AddtS6Q
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Intelligent+Sensor+Networks&rft.au=Iyer%2C+Vasanth&rft.au=Iyengar%2C+S.+Sitharama&rft.au=Pissinou%2C+Niki&rft.atitle=Modeling+Unreliable+Data+and+Sensors&rft.date=2013-01-01&rft.pub=CRC+Press&rft.isbn=9781138199743&rft.spage=31&rft.epage=53&rft_id=info:doi/10.1201%2Fb14300-3&rft.externalDocID=10_1201_b14300_3_version2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781138199743/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781138199743/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781138199743/sc.gif&client=summon&freeimage=true