Modeling Unreliable Data and Sensors Using Event Log Performance and F-Measure Attribute Selection
The baseline discrete parameters capture only the sensor ranges, making event prediction function hard to train with a Gaussian density function, without specific temporal understanding of the datasets. The dynamic features present in a sequence of patterns are localized and used to predict events,...
Saved in:
Published in | Intelligent Sensor Networks pp. 31 - 53 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
CRC Press
2013
|
Edition | 1 |
Subjects | |
Online Access | Get full text |
ISBN | 1138199745 9781439892817 1439892814 9781138199743 |
DOI | 10.1201/b14300-3 |
Cover
Abstract | The baseline discrete parameters capture only the sensor ranges, making event prediction function hard to train with a Gaussian density function, without specific temporal understanding of the datasets. The dynamic features present in a sequence of patterns are localized and used to predict events, which otherwise may be an attributing feature to the static data mining algorithm. The machine learning repository provides collection of supervised databases that are used for the empirical analysis of event prediction algorithms with unsupervised datasets from distributed wireless sensor networks. A measure which combines precision and recall for a small dataset is F-measure and is the weighted harmonic mean of precision and relevance. The availability of such a system is expected to allow more flexible modeling approaches and much more rapid model turnaround for exploratory analysis. From statistical point of view, if the attributes have similar values then it creates high bias creating what is called over-fitting error during learning. |
---|---|
AbstractList | The baseline discrete parameters capture only the sensor ranges, making event prediction function hard to train with a Gaussian density function, without specific temporal understanding of the datasets. The dynamic features present in a sequence of patterns are localized and used to predict events, which otherwise may be an attributing feature to the static data mining algorithm. The machine learning repository provides collection of supervised databases that are used for the empirical analysis of event prediction algorithms with unsupervised datasets from distributed wireless sensor networks. A measure which combines precision and recall for a small dataset is F-measure and is the weighted harmonic mean of precision and relevance. The availability of such a system is expected to allow more flexible modeling approaches and much more rapid model turnaround for exploratory analysis. From statistical point of view, if the attributes have similar values then it creates high bias creating what is called over-fitting error during learning. |
Author | Iyer, Vasanth Pissinou, Niki Iyengar, S. Sitharama |
Author_xml | – sequence: 1 givenname: Vasanth surname: Iyer fullname: Iyer, Vasanth – sequence: 2 givenname: S. Sitharama surname: Iyengar fullname: Iyengar, S. Sitharama – sequence: 3 givenname: Niki surname: Pissinou fullname: Pissinou, Niki |
BookMark | eNotj8tKBDEURCMq6IwNfkIv3Lbem4dJdso4PmDEhc46JJ1Egm0CyaD497aMq6oDRcFZkKNcciDkHOESKeCVQ84ABnZAOi3VDFppqig_JAtEplBrycUJ6VpLDgQTFJTQp-Tiufgwpfzeb3Odi3VT6O_szvY2-_415FZqOyPH0U4tdP-5JNv79dvqcdi8PDytbjdDQk53g_IahdWCRuavAYGCcIJxCdJbGSTTUeugBMSZqEMaIYAbgc-jkY4e2ZLc7H9TjqV-2u9SJ2929mcqNVabx9RcKR_NIJg_abOXNsx8hdpSyZT9ApHlTTI |
ContentType | Book Chapter |
Copyright | 2013 by Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2013 by Taylor & Francis Group, LLC |
DOI | 10.1201/b14300-3 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Modeling Unreliable Data and Sensors |
EISBN | 9781439892824 1466589159 9780429066962 9781466589155 0429066961 1439892822 9781466589148 1466589140 |
Edition | 1 |
Editor | Hao, Qi Hu, Fei |
Editor_xml | – sequence: 1 givenname: Fei surname: Hu fullname: Hu, Fei – sequence: 2 givenname: Qi surname: Hao fullname: Hao, Qi |
EndPage | 53 |
ExternalDocumentID | 10_1201_b14300_3_version2 |
GroupedDBID | 089 20A 38. 5~G A4J AABBV AALIM ABEQL ACBYE ADTEY ADYHE AFWCW AFXGA AGOQD AGWHU AHEBD AHTWU AKSCQ ALKVF ALMA_UNASSIGNED_HOLDINGS ALYTH ATPON AZZ BBABE BMO BQVRA CZZ EBATF EIXGO GEO INALI JG1 JJU JTX MYL NEQ OHILO OODEK OXWLL TTQNR WZT |
ID | FETCH-LOGICAL-i142t-8d915a952f3d6010205b534707da7e739f99e850fa7e2b12f0e0bc04b53c2cd13 |
ISBN | 1138199745 9781439892817 1439892814 9781138199743 |
IngestDate | Fri Mar 28 04:24:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Bayes Net Small Fires Sensor Networks Major Fire Events Forest Fire Event SVM Classifier Wireless Sensor Networks Attribute Selection Bell Shape Curve Fire Events Fire Activity Bayes Network Ranking Function Distributed Kalman Filtering Training Samples Collection Burnt Area Sensor Measurements Cognitive Wireless Sensor Networks Intelligent Sensor Networks FWI Gaussian Density Function Weather Data Large Fires |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-i142t-8d915a952f3d6010205b534707da7e739f99e850fa7e2b12f0e0bc04b53c2cd13 |
PageCount | 23 |
ParticipantIDs | informaworld_taylorfrancisbooks_10_1201_b14300_3_version2 |
PublicationCentury | 2000 |
PublicationDate | 2013 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013 |
PublicationDecade | 2010 |
PublicationSubtitle | The Integration of Sensor Networks, Signal Processing and Machine Learning |
PublicationTitle | Intelligent Sensor Networks |
PublicationYear | 2013 |
Publisher | CRC Press |
Publisher_xml | – name: CRC Press |
SSID | ssib053520859 ssib036837809 ssj0000856314 ssib056783830 ssib027107258 ssib058156596 |
Score | 1.4073164 |
Snippet | The baseline discrete parameters capture only the sensor ranges, making event prediction function hard to train with a Gaussian density function, without... |
SourceID | informaworld |
SourceType | Publisher |
StartPage | 31 |
Subtitle | Using Event Log Performance and F-Measure Attribute Selection |
Title | Modeling Unreliable Data and Sensors |
URI | https://www.taylorfrancis.com/books/9780429066962/chapters/10.1201/b14300-3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELba7aX00pYioAXlwK3KNrHjOD6iZdEW1IdYttpbFCcOTUFZqRsqwa9nxs4T2gP0EiVeJ7L92eMZ78w3hBx4SUYpqB1umPvSDSLKXKWz3OWJH1ABTVcRxg5_-RrOFsHJki-7lJcmuqRS4_T2r3ElT0EVygBXjJJ9BLLtR6EA7gFfuALCcL2n_A6PWVt3QUumWcGKL9crE72Lflatmvz5xgLyI1nDAP7sFZcX1rF6Pv44Lyokbe7k83fAoihX13aiXBb9WYWp00wA-wJadVWYuKujpEqsB6hpxeAgAZM6DA4SJmeTgduHtTB9H006MDpYT8rVctvul5br94EkpiYDgAJ1zANB3-02rQ8gWh9QKbZVYhb_sQeEsJ8-F1EwIi8Op_PTb41woKAKCdr9hctCpMLvuMeQpgbJ2tpn2IXB-m6FEUdaHF5zC_6yDnohM2m_2j5yE_nHZCRp5Ac1IVg7AA1BWP27qKmMoQ-fmm7e47vtaSrnr8krjF5xMKwEhuENeabLt2Sjxzq5SQ4aEJ0ORAdBdABEpwbxHVkcT88nM7dOluEWsKoqN8qkzxPJac4yNLKpxxVngfBElggtmMyl1BH3cniiyqe5pz2VegFUSmma-WyLjMpVqbeJI2gCSjNTVFIeZFqokLEoDXMdZqDuSr1DZL-XcWXOlnKbCAbXwzr-J7i7__Hue_Kym7cfyKj6fa33QCWs1H49We4AddtS6Q |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Intelligent+Sensor+Networks&rft.au=Iyer%2C+Vasanth&rft.au=Iyengar%2C+S.+Sitharama&rft.au=Pissinou%2C+Niki&rft.atitle=Modeling+Unreliable+Data+and+Sensors&rft.date=2013-01-01&rft.pub=CRC+Press&rft.isbn=9781138199743&rft.spage=31&rft.epage=53&rft_id=info:doi/10.1201%2Fb14300-3&rft.externalDocID=10_1201_b14300_3_version2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781138199743/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781138199743/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781138199743/sc.gif&client=summon&freeimage=true |