Overview and Benchmarking of Motion Detection Methods
Motion detection is closely coupled with higher level inference tasks such as detection, localization, tracking, and classification of moving objects, and is often considered to be a preprocessing step. Its importance can be gauged by the large number of algorithms that have been developed to-date an...
Saved in:
Published in | Background Modeling and Foreground Detection for Video Surveillance pp. 575 - 600 |
---|---|
Format | Book Chapter |
Language | English |
Published |
Chapman and Hall/CRC
2015
|
Subjects | |
Online Access | Get full text |
DOI | 10.1201/b17223-34 |
Cover
Abstract | Motion detection is closely coupled with higher level inference tasks such as detection,
localization, tracking, and classification of moving objects, and is often considered to be a
preprocessing step. Its importance can be gauged by the large number of algorithms that
have been developed to-date and the even larger number of articles that have been published
on this topic. A quick search for ”motion detection” on IEEE Xplore c© returns over 20,000
papers. This shows that motion detection is a fundamental topic for a wide range of video
analytic applications. It also shows that the number of motion detection methods proposed
so far is impressively large. |
---|---|
AbstractList | Motion detection is closely coupled with higher level inference tasks such as detection,
localization, tracking, and classification of moving objects, and is often considered to be a
preprocessing step. Its importance can be gauged by the large number of algorithms that
have been developed to-date and the even larger number of articles that have been published
on this topic. A quick search for ”motion detection” on IEEE Xplore c© returns over 20,000
papers. This shows that motion detection is a fundamental topic for a wide range of video
analytic applications. It also shows that the number of motion detection methods proposed
so far is impressively large. |
BookMark | eNotz81OAjEUBeCaaKLiLHyDeYHR3v5M6xJR0QTChn3TaW-lAm3STiC-vSiuzlmdnO-WXKackJB7oA_AKDwOoBjjHRcXpHlSGoRmjEqu4Zo0tX5RSoELSaW-IXJ1wHKIeGxt8u0zJrfZ27KN6bPNoV3mMebUvuCI7q8tcdxkX-_IVbC7is1_Tsj67XU9e-8Wq_nHbLroInAlOuY4gAIE7NmgmAogmVbS956jBGp9CIEHIYQMjrIeQSkmtZCqd71Dyidkep6NKeSyt8dcdt6M9nuXSyg2uViHnLfVADW_cHOGGy7MSVVPhxn_AWXfURU |
ContentType | Book Chapter |
Copyright | 2015 by Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2015 by Taylor & Francis Group, LLC |
DOI | 10.1201/b17223-34 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781482205381 1482205386 9780429171116 0429171110 |
Editor | Vacavant, Antoine Porikli, Fatih Bouwmans, Thierry Höferlin, Benjamin |
Editor_xml | – sequence: 1 givenname: Thierry surname: Bouwmans fullname: Bouwmans, Thierry – sequence: 2 givenname: Fatih surname: Porikli fullname: Porikli, Fatih – sequence: 3 givenname: Benjamin surname: Höferlin fullname: Höferlin, Benjamin – sequence: 4 givenname: Antoine surname: Vacavant fullname: Vacavant, Antoine |
EndPage | 600 |
ExternalDocumentID | 10_1201_b17223_34_version2 |
GroupedDBID | 20A 38. 5~G AABBV ABARN ABEQL ABMRC ABQPQ ACLGV ACRMW ADVEM ADYHE AERYV AEUHU AFIZQ AFOJC AFXGA AGJKK AGOQD AHEBD AHTWU AHWGJ AIENH AIXXW AJFER AKPKN AKSCQ AKV ALMA_UNASSIGNED_HOLDINGS ALYTH ATPON AXTGW AZZ BBABE BMO BQVRA CZZ EBATF EBSCA GEO GEOUK I4C INALI JG1 JJU JTX MYL NEQ NEV OHILO OODEK |
ID | FETCH-LOGICAL-i1374-2c31171e1e62b727f152875d6d3e510adfff3f4445fc026e1772584576c6ce03 |
IngestDate | Wed Jul 23 08:42:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | false |
Keywords | Combination Rule Motion Detection Methods Normalize RGB Background Model IEEE Xplore Motion Detection Camera Jitter Chebyshev Inequality Background Pixel Updating Scheme Generalized Gaussian Model Motion Detection Techniques Post-processing Methods Motion History Image Multi-criteria Ranking Non-Parametric Kernel Density Estimation Motion Segmentation RGB Color Segmentation Map Background Motion Dirichlet Process Background Subtraction Foreground Pixels Background Subtraction Method GMM Method |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-i1374-2c31171e1e62b727f152875d6d3e510adfff3f4445fc026e1772584576c6ce03 |
OpenAccessLink | http://orbi.ulg.ac.be/handle/2268/157177 |
PageCount | 26 |
ParticipantIDs | informaworld_taylorfrancisbooks_10_1201_b17223_34_version2 |
PublicationCentury | 2000 |
PublicationDate | 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationTitle | Background Modeling and Foreground Detection for Video Surveillance |
PublicationYear | 2015 |
Publisher | Chapman and Hall/CRC |
Publisher_xml | – name: Chapman and Hall/CRC |
SSID | ssj0001345058 ssib056448632 |
Score | 1.4501168 |
Snippet | Motion detection is closely coupled with higher level inference tasks such as detection,
localization, tracking, and classification of moving objects, and is... |
SourceID | informaworld |
SourceType | Publisher |
StartPage | 575 |
Title | Overview and Benchmarking of Motion Detection Methods |
URI | https://www.taylorfrancis.com/books/9780429171116/chapters/10.1201/b17223-34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YuKgXn_GdHrxWafdR9ahCiImaGDTcmnY7G4kREqwc_PXO7C6loB7US0M2ZWhnyu7M1_3mY-xYFEJzom4lrZyHIuM6zMw5YECIdq1BxkCA_u2d6j6Km77szzQzLbukzE_0x7e8kr9EFccwrsSS_UVkK6M4gJ8xvnjECONxIfmdh1ndK9hMvxAngzZKkJzNlG1IYpt-_BpK0NVmwqdBASOcKcYTIKmhKtrO3P2EZg1wG4Qv8S6fXzOLo9tNMlbrp2bv1gpPz2EGkVzADDy1wRrsZvR6o3P1MG0h6SpLag8a4x_U6an42U06kRO_UCrbYvTrHBzb3v85ZkYxDz1SOd_SmgoPPCt156RcpBMHDuJa2oyF4q0Ga-Ky3K6AF0llpPIUWAufcYG525nvFYXGTqsfXGg6W0sXemtslSgkATkAL2idLcFwg63UWj9uMjn1d4DuCer-DkYmcP4OKn8H3t9brNdp9666oZewCAcRT0QYax5FSQQRqDjHVNFguoQVYqEKDjgbZoUxhhshhDQaq2GIsNjBlBCLQK1IyW2bNYajIeywIImKM8rHjQIpkgRyketCZsokomgp4Lvson7XaWkBH-PUWeghfUt_dvvef768z5Znz9gBa5TjdzjETK3Mj3wUPwGY50ED |
linkProvider | ProQuest Ebooks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Background+Modeling+and+Foreground+Detection+for+Video+Surveillance&rft.atitle=Overview+and+Benchmarking+of+Motion+Detection+Methods&rft.date=2015-01-01&rft.pub=Chapman+and+Hall%2FCRC&rft.isbn=9781482205381&rft.spage=575&rft.epage=600&rft_id=info:doi/10.1201%2Fb17223-34&rft.externalDocID=10_1201_b17223_34_version2 |