Design of hybrid wind and photovoltaic power system using opposition-based genetic algorithm with Cauchy mutation
In recent decades, depletion of fossil fuels and its demand emerge as renewable energy in the field of power generation. Amid eco-friendly based renewable energy, wind and photovoltaic play a vital role in power generation. Nonetheless, this form of power generation needs more advancement to retriev...
Saved in:
Published in | IET Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2013) pp. 504 - 510 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
Stevenage, UK
IET
2013
The Institution of Engineering & Technology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent decades, depletion of fossil fuels and its demand emerge as renewable energy in the field of power generation. Amid eco-friendly based renewable energy, wind and photovoltaic play a vital role in power generation. Nonetheless, this form of power generation needs more advancement to retrieve optimal power flow under economical conditions. This paper aims to predict optimal sizing for hybrid wind and photovoltaic (PV) power generation under minimized cost. This optimal sizing of hybrid Wind-PV is accomplished by satisfying the average annual load demand. This process happens via opposition based genetic algorithm with Cauchy mutation (OGA-CM) and the proposed OGA-CM performance measure is compared with Opposition based Genetic Algorithm and Genetic Algorithm. The result shows that our proposed OGA-GA produces superior result than those of the other two. The overall computation process is done in the working platform of MATLAB R2013. |
---|---|
AbstractList | In recent decades, depletion of fossil fuels and its demand emerge as renewable energy in the field of power generation. Amid eco-friendly based renewable energy, wind and photovoltaic play a vital role in power generation. Nonetheless, this form of power generation needs more advancement to retrieve optimal power flow under economical conditions. This paper aims to predict optimal sizing for hybrid wind and photovoltaic (PV) power generation under minimized cost. This optimal sizing of hybrid Wind-PV is accomplished by satisfying the average annual load demand. This process happens via opposition based genetic algorithm with Cauchy mutation (OGA-CM) and the proposed OGA-CM performance measure is compared with Opposition based Genetic Algorithm and Genetic Algorithm. The result shows that our proposed OGA-GA produces superior result than those of the other two. The overall computation process is done in the working platform of MATLAB R2013. |
Author | Valarmathi, I.R Swamy, S.M Rajakumar, B.R |
Author_xml | – sequence: 1 givenname: S.M surname: Swamy fullname: Swamy, S.M organization: Aloy Labs., Bangalore – sequence: 2 givenname: B.R surname: Rajakumar fullname: Rajakumar, B.R – sequence: 3 givenname: I.R surname: Valarmathi fullname: Valarmathi, I.R |
BookMark | eNotkMtqwzAQRQVtoW2aXT9A0GVxOrJsWVqW9AmBbtq1keWxrZBIjiU35O9rky4uszlzL5xbcum8Q0LuGawYZOrJmlUKjK-AC3ZBlqqQrJC5YMCBXZNlCFsAYEpIqfgNObxgsK2jvqHdqRpsTY_W1VRP6Tsf_a_fRW0N7f0RBxpOIeKejsG6lvq-98FG611S6YA1bdFhnFi9a_1gY7efumJH13o03Ynux6hn-I5cNXoXcPl_F-Tn7fV7_ZFsvt4_18-bxDKexaRoeK20SXXKc1lUrEKpIZdGcVlnGQfIuWjqygAozTHjVVopJkwG-fSZ58gX5OHc2w_-MGKI5daPg5smS1YUIisE52KiHs-UxVga7xoc0BmcGChnnaU15ayznHXyP43pbGY |
ContentType | Conference Proceeding |
Copyright | Copyright The Institution of Engineering & Technology Dec 12, 2013 |
Copyright_xml | – notice: Copyright The Institution of Engineering & Technology Dec 12, 2013 |
DBID | 8ET 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.1049/ic.2013.0361 |
DatabaseName | IET Conference Publications by volume ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection |
DatabaseTitle | Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 510 |
ExternalDocumentID | 4002811811 10_1049_ic_2013_0361 |
GroupedDBID | 6IE 6IK 8ET AAJGR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE 8FE 8FG AAWTH ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
ID | FETCH-LOGICAL-i134t-7f3d9ac2a23587b1be8a058c938d44300536fdbc009a3e43b2b916c4057f355e3 |
IEDL.DBID | BENPR |
ISBN | 9781785610301 1785610309 |
IngestDate | Mon Jun 30 10:06:46 EDT 2025 Tue Jan 05 23:28:54 EST 2021 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | cost reduction opposition-based genetic algorithm photovoltaic power systems PV power generation average annual load demand genetic algorithms power generation economics hybrid wind-photovoltaic power system OGA-CM Cauchy mutation wind power plants optimal sizing hybrid power systems |
Language | English |
LinkModel | DirectLink |
MeetingName | IET Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2013), 12-14 Dec. 2013, Chennai, India |
MergedId | FETCHMERGED-LOGICAL-i134t-7f3d9ac2a23587b1be8a058c938d44300536fdbc009a3e43b2b916c4057f355e3 |
Notes | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22 |
PQID | 1776476336 |
PQPubID | 1936365 |
PageCount | 7 |
ParticipantIDs | proquest_journals_1776476336 iet_conferences_10_1049_ic_2013_0361 |
ProviderPackageCode | 8ET |
PublicationCentury | 2000 |
PublicationDate | 20130000 20131212 |
PublicationDateYYYYMMDD | 2013-01-01 2013-12-12 |
PublicationDate_xml | – year: 2013 text: 20130000 |
PublicationDecade | 2010 |
PublicationPlace | Stevenage, UK |
PublicationPlace_xml | – name: Stevenage, UK – name: Stevenage |
PublicationTitle | IET Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2013) |
PublicationYear | 2013 |
Publisher | IET The Institution of Engineering & Technology |
Publisher_xml | – name: IET – name: The Institution of Engineering & Technology |
SSID | ssj0001968893 |
Score | 1.5408902 |
Snippet | In recent decades, depletion of fossil fuels and its demand emerge as renewable energy in the field of power generation. Amid eco-friendly based renewable... |
SourceID | proquest iet |
SourceType | Aggregation Database Publisher |
StartPage | 504 |
SubjectTerms | Optimisation techniques Power system management, operation and economics Solar power stations and photovoltaic power systems Wind power plants |
Title | Design of hybrid wind and photovoltaic power system using opposition-based genetic algorithm with Cauchy mutation |
URI | http://digital-library.theiet.org/content/conferences/10.1049/ic.2013.0361 https://www.proquest.com/docview/1776476336 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF6sXvTko2J9lD14je1mN8nmJPioIihFLPQW9mkD2qQ2Rfz3zqRpFQQPOYSEHCa7M9_Mft8MIedaAS4WRgbKOkhQjE8DBaggUN5ELjTGRnVp4PEpvh-Jh3E0bgpu84ZWufKJtaO2hcEaeY8lSSxgM_D4spwFODUKT1ebERotsgUuWELytXV1-zR8_qmypLGEiIyKrkQiVOD9tGn0tLpnDR0eoHIvx6aGjF-AW2cQbHJX_XHRddwZ7JL2jyKPDtexZo9suOk-2fnVTPCAzG5qMgYtPJ18oQ6LfkK-TRVc5aSoCvBDlcoNLXEuGl12cKZIe3-lRbnibgUY1SyFVYXiRqreXsEG1eSdYr2WXquFmXzR98Xy_L5NRoPbl-v7oBmoEOSMiypIPLepMqFCfWyimXZS9SNpUi6tENi4nsfeagO4S3EnuA41oEeDmM4DLnH8kGxOi6k7IlRrrkKbJi5KmfDeSSF03zGLpIvYR6pDzsF6mVkbaZ7Vx90izXKToZEzNHKHnK7MmzWbB15c_-rj_x-fkG38ErJLWHhKNquPhTsDjFDpLmnJwV23WQ7dWtb3DVP9vH4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ReqA9tTzEs-wBji5Z7_qxB9QDEEJ5qAeQuLn7JJYgDo2jKH-qv7EzThyQKnHj4IPl1R7Gs_t9O_vNDMCB0ciLpc0j7TweUGxQkUZWEOlgEx9b65ImNHB9k_bu5M_75H4J_ra5MCSrbPfEZqN2laUY-RHPslTiYhDpj-FzRF2j6Ha1baExc4tLP53gkW10fHGK__cwjrtntye9aN5VICq5kHWUBeGUtrGmJNHMcONz3Ulyq0TupKTq7SINzlgkH1p4KUxskEJZIjYBwdkLnPcDfJRCKFpReff8Jaaj0hzxn_LHspyIieioeVmp9p3PxfdIzI9KKqHIxXcEEY7QVvr6P0BoUK77BdZf8v_YrwWyfYUlP1iFz69KF67B82kj_WBVYP0pZX2xCZ7umcZn2K_qCne9WpeWDakLG5vVi2Yksn9g1bBVikWEoY6hD1MqJdOPD2jxuv_EKDrMTvTY9qfsaTxTC6zD3bsYegOWB9XAbwIzRujYqcwnissQfC6l6XjuSOKRhkRvwQFar7ALI42K5nJdqqK0BRm5ICNvwW5r3mK-VHHgwrG23_68Dyu92-ur4uri5nIHPtGspGvh8S4s13_Gfg_ZSW2-NS7B4Pd7--A_bZz1Cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IET+Chennai+Fourth+International+Conference+on+Sustainable+Energy+and+Intelligent+Systems+%28SEISCON+2013%29&rft.atitle=Design+of+hybrid+wind+and+photovoltaic+power+system+using+opposition-based+genetic+algorithm+with+Cauchy+mutation&rft.au=Swamy%2C+S.M&rft.au=Rajakumar%2C+B.R&rft.au=Valarmathi%2C+I.R&rft.date=2013-01-01&rft.pub=IET&rft.isbn=9781785610301&rft.spage=504&rft.epage=510&rft_id=info:doi/10.1049%2Fic.2013.0361&rft.externalDocID=10_1049_ic_2013_0361 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781785610301/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781785610301/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781785610301/sc.gif&client=summon&freeimage=true |