Design of hybrid wind and photovoltaic power system using opposition-based genetic algorithm with Cauchy mutation

In recent decades, depletion of fossil fuels and its demand emerge as renewable energy in the field of power generation. Amid eco-friendly based renewable energy, wind and photovoltaic play a vital role in power generation. Nonetheless, this form of power generation needs more advancement to retriev...

Full description

Saved in:
Bibliographic Details
Published inIET Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2013) pp. 504 - 510
Main Authors Swamy, S.M, Rajakumar, B.R, Valarmathi, I.R
Format Conference Proceeding
LanguageEnglish
Published Stevenage, UK IET 2013
The Institution of Engineering & Technology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent decades, depletion of fossil fuels and its demand emerge as renewable energy in the field of power generation. Amid eco-friendly based renewable energy, wind and photovoltaic play a vital role in power generation. Nonetheless, this form of power generation needs more advancement to retrieve optimal power flow under economical conditions. This paper aims to predict optimal sizing for hybrid wind and photovoltaic (PV) power generation under minimized cost. This optimal sizing of hybrid Wind-PV is accomplished by satisfying the average annual load demand. This process happens via opposition based genetic algorithm with Cauchy mutation (OGA-CM) and the proposed OGA-CM performance measure is compared with Opposition based Genetic Algorithm and Genetic Algorithm. The result shows that our proposed OGA-GA produces superior result than those of the other two. The overall computation process is done in the working platform of MATLAB R2013.
AbstractList In recent decades, depletion of fossil fuels and its demand emerge as renewable energy in the field of power generation. Amid eco-friendly based renewable energy, wind and photovoltaic play a vital role in power generation. Nonetheless, this form of power generation needs more advancement to retrieve optimal power flow under economical conditions. This paper aims to predict optimal sizing for hybrid wind and photovoltaic (PV) power generation under minimized cost. This optimal sizing of hybrid Wind-PV is accomplished by satisfying the average annual load demand. This process happens via opposition based genetic algorithm with Cauchy mutation (OGA-CM) and the proposed OGA-CM performance measure is compared with Opposition based Genetic Algorithm and Genetic Algorithm. The result shows that our proposed OGA-GA produces superior result than those of the other two. The overall computation process is done in the working platform of MATLAB R2013.
Author Valarmathi, I.R
Swamy, S.M
Rajakumar, B.R
Author_xml – sequence: 1
  givenname: S.M
  surname: Swamy
  fullname: Swamy, S.M
  organization: Aloy Labs., Bangalore
– sequence: 2
  givenname: B.R
  surname: Rajakumar
  fullname: Rajakumar, B.R
– sequence: 3
  givenname: I.R
  surname: Valarmathi
  fullname: Valarmathi, I.R
BookMark eNotkMtqwzAQRQVtoW2aXT9A0GVxOrJsWVqW9AmBbtq1keWxrZBIjiU35O9rky4uszlzL5xbcum8Q0LuGawYZOrJmlUKjK-AC3ZBlqqQrJC5YMCBXZNlCFsAYEpIqfgNObxgsK2jvqHdqRpsTY_W1VRP6Tsf_a_fRW0N7f0RBxpOIeKejsG6lvq-98FG611S6YA1bdFhnFi9a_1gY7efumJH13o03Ynux6hn-I5cNXoXcPl_F-Tn7fV7_ZFsvt4_18-bxDKexaRoeK20SXXKc1lUrEKpIZdGcVlnGQfIuWjqygAozTHjVVopJkwG-fSZ58gX5OHc2w_-MGKI5daPg5smS1YUIisE52KiHs-UxVga7xoc0BmcGChnnaU15ayznHXyP43pbGY
ContentType Conference Proceeding
Copyright Copyright The Institution of Engineering & Technology Dec 12, 2013
Copyright_xml – notice: Copyright The Institution of Engineering & Technology Dec 12, 2013
DBID 8ET
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1049/ic.2013.0361
DatabaseName IET Conference Publications by volume
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
DatabaseTitle Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 510
ExternalDocumentID 4002811811
10_1049_ic_2013_0361
GroupedDBID 6IE
6IK
8ET
AAJGR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
8FE
8FG
AAWTH
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ID FETCH-LOGICAL-i134t-7f3d9ac2a23587b1be8a058c938d44300536fdbc009a3e43b2b916c4057f355e3
IEDL.DBID BENPR
ISBN 9781785610301
1785610309
IngestDate Mon Jun 30 10:06:46 EDT 2025
Tue Jan 05 23:28:54 EST 2021
IsPeerReviewed false
IsScholarly false
Keywords cost reduction
opposition-based genetic algorithm
photovoltaic power systems
PV power generation
average annual load demand
genetic algorithms
power generation economics
hybrid wind-photovoltaic power system
OGA-CM
Cauchy mutation
wind power plants
optimal sizing
hybrid power systems
Language English
LinkModel DirectLink
MeetingName IET Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2013), 12-14 Dec. 2013, Chennai, India
MergedId FETCHMERGED-LOGICAL-i134t-7f3d9ac2a23587b1be8a058c938d44300536fdbc009a3e43b2b916c4057f355e3
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
PQID 1776476336
PQPubID 1936365
PageCount 7
ParticipantIDs proquest_journals_1776476336
iet_conferences_10_1049_ic_2013_0361
ProviderPackageCode 8ET
PublicationCentury 2000
PublicationDate 20130000
20131212
PublicationDateYYYYMMDD 2013-01-01
2013-12-12
PublicationDate_xml – year: 2013
  text: 20130000
PublicationDecade 2010
PublicationPlace Stevenage, UK
PublicationPlace_xml – name: Stevenage, UK
– name: Stevenage
PublicationTitle IET Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2013)
PublicationYear 2013
Publisher IET
The Institution of Engineering & Technology
Publisher_xml – name: IET
– name: The Institution of Engineering & Technology
SSID ssj0001968893
Score 1.5408902
Snippet In recent decades, depletion of fossil fuels and its demand emerge as renewable energy in the field of power generation. Amid eco-friendly based renewable...
SourceID proquest
iet
SourceType Aggregation Database
Publisher
StartPage 504
SubjectTerms Optimisation techniques
Power system management, operation and economics
Solar power stations and photovoltaic power systems
Wind power plants
Title Design of hybrid wind and photovoltaic power system using opposition-based genetic algorithm with Cauchy mutation
URI http://digital-library.theiet.org/content/conferences/10.1049/ic.2013.0361
https://www.proquest.com/docview/1776476336
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF6sXvTko2J9lD14je1mN8nmJPioIihFLPQW9mkD2qQ2Rfz3zqRpFQQPOYSEHCa7M9_Mft8MIedaAS4WRgbKOkhQjE8DBaggUN5ELjTGRnVp4PEpvh-Jh3E0bgpu84ZWufKJtaO2hcEaeY8lSSxgM_D4spwFODUKT1ebERotsgUuWELytXV1-zR8_qmypLGEiIyKrkQiVOD9tGn0tLpnDR0eoHIvx6aGjF-AW2cQbHJX_XHRddwZ7JL2jyKPDtexZo9suOk-2fnVTPCAzG5qMgYtPJ18oQ6LfkK-TRVc5aSoCvBDlcoNLXEuGl12cKZIe3-lRbnibgUY1SyFVYXiRqreXsEG1eSdYr2WXquFmXzR98Xy_L5NRoPbl-v7oBmoEOSMiypIPLepMqFCfWyimXZS9SNpUi6tENi4nsfeagO4S3EnuA41oEeDmM4DLnH8kGxOi6k7IlRrrkKbJi5KmfDeSSF03zGLpIvYR6pDzsF6mVkbaZ7Vx90izXKToZEzNHKHnK7MmzWbB15c_-rj_x-fkG38ErJLWHhKNquPhTsDjFDpLmnJwV23WQ7dWtb3DVP9vH4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ReqA9tTzEs-wBji5Z7_qxB9QDEEJ5qAeQuLn7JJYgDo2jKH-qv7EzThyQKnHj4IPl1R7Gs_t9O_vNDMCB0ciLpc0j7TweUGxQkUZWEOlgEx9b65ImNHB9k_bu5M_75H4J_ra5MCSrbPfEZqN2laUY-RHPslTiYhDpj-FzRF2j6Ha1baExc4tLP53gkW10fHGK__cwjrtntye9aN5VICq5kHWUBeGUtrGmJNHMcONz3Ulyq0TupKTq7SINzlgkH1p4KUxskEJZIjYBwdkLnPcDfJRCKFpReff8Jaaj0hzxn_LHspyIieioeVmp9p3PxfdIzI9KKqHIxXcEEY7QVvr6P0BoUK77BdZf8v_YrwWyfYUlP1iFz69KF67B82kj_WBVYP0pZX2xCZ7umcZn2K_qCne9WpeWDakLG5vVi2Yksn9g1bBVikWEoY6hD1MqJdOPD2jxuv_EKDrMTvTY9qfsaTxTC6zD3bsYegOWB9XAbwIzRujYqcwnissQfC6l6XjuSOKRhkRvwQFar7ALI42K5nJdqqK0BRm5ICNvwW5r3mK-VHHgwrG23_68Dyu92-ur4uri5nIHPtGspGvh8S4s13_Gfg_ZSW2-NS7B4Pd7--A_bZz1Cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IET+Chennai+Fourth+International+Conference+on+Sustainable+Energy+and+Intelligent+Systems+%28SEISCON+2013%29&rft.atitle=Design+of+hybrid+wind+and+photovoltaic+power+system+using+opposition-based+genetic+algorithm+with+Cauchy+mutation&rft.au=Swamy%2C+S.M&rft.au=Rajakumar%2C+B.R&rft.au=Valarmathi%2C+I.R&rft.date=2013-01-01&rft.pub=IET&rft.isbn=9781785610301&rft.spage=504&rft.epage=510&rft_id=info:doi/10.1049%2Fic.2013.0361&rft.externalDocID=10_1049_ic_2013_0361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781785610301/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781785610301/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781785610301/sc.gif&client=summon&freeimage=true