Sentiment analysis using image-based deep spectrum features

We test the suitability of our novel deep spectrum feature representation for performing speech-based sentiment analysis. Deep spectrum features are formed by passing spectrograms through a pre-trained image convolutional neural network (CNN) and have been shown to capture useful emotion information...

Full description

Saved in:
Bibliographic Details
Published in2017 Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) pp. 26 - 29
Main Authors Amiriparian, Shahin, Cummins, Nicholas, Ottl, Sandra, Gerczuk, Maurice, Schuller, Bjorn
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2017
Subjects
Online AccessGet full text
DOI10.1109/ACIIW.2017.8272618

Cover

Loading…
Abstract We test the suitability of our novel deep spectrum feature representation for performing speech-based sentiment analysis. Deep spectrum features are formed by passing spectrograms through a pre-trained image convolutional neural network (CNN) and have been shown to capture useful emotion information in speech; however, their usefulness for sentiment analysis is yet to be investigated. Using a data set of movie reviews collected from YouTube, we compare deep spectrum features combined with the bag-of-audio-words (BoAW) paradigm with a state-of-the-art Mel Frequency Cepstral Coefficients (MFCC) based BoAW system when performing a binary sentiment classification task. Key results presented indicate the suitability of both features for the proposed task. The deep spectrum features achieve an unweighted average recall of 74.5 %. The results provide further evidence for the effectiveness of deep spectrum features as a robust feature representation for speech analysis.
AbstractList We test the suitability of our novel deep spectrum feature representation for performing speech-based sentiment analysis. Deep spectrum features are formed by passing spectrograms through a pre-trained image convolutional neural network (CNN) and have been shown to capture useful emotion information in speech; however, their usefulness for sentiment analysis is yet to be investigated. Using a data set of movie reviews collected from YouTube, we compare deep spectrum features combined with the bag-of-audio-words (BoAW) paradigm with a state-of-the-art Mel Frequency Cepstral Coefficients (MFCC) based BoAW system when performing a binary sentiment classification task. Key results presented indicate the suitability of both features for the proposed task. The deep spectrum features achieve an unweighted average recall of 74.5 %. The results provide further evidence for the effectiveness of deep spectrum features as a robust feature representation for speech analysis.
Author Amiriparian, Shahin
Cummins, Nicholas
Ottl, Sandra
Schuller, Bjorn
Gerczuk, Maurice
Author_xml – sequence: 1
  givenname: Shahin
  surname: Amiriparian
  fullname: Amiriparian, Shahin
  organization: Chair of Embedded Intelligence for Health Care & Wellbeing, Augsburg University, Augsburg, Germany
– sequence: 2
  givenname: Nicholas
  surname: Cummins
  fullname: Cummins, Nicholas
  organization: Chair of Embedded Intelligence for Health Care & Wellbeing, Augsburg University, Augsburg, Germany
– sequence: 3
  givenname: Sandra
  surname: Ottl
  fullname: Ottl, Sandra
  organization: Chair of Complex & Intelligent Systems, Universität Passau, Germany
– sequence: 4
  givenname: Maurice
  surname: Gerczuk
  fullname: Gerczuk, Maurice
  organization: Chair of Complex & Intelligent Systems, Universität Passau, Germany
– sequence: 5
  givenname: Bjorn
  surname: Schuller
  fullname: Schuller, Bjorn
  organization: Chair of Embedded Intelligence for Health Care & Wellbeing, Augsburg University, Augsburg, Germany
BookMark eNotj81qwzAQhFVoD03aF2gvegG7WmktbegpmP4YAj00occgy-sgiF1j2Ye8fQ3NZeY7Dd-sxG3_27MQT6ByALV52ZZV9ZNrBS4n7bQFuhErKAxZZUnBvXj95n6K3RLS9_58STHJOcX-JGPnT5zVPnEjG-ZBpoHDNM6dbNlP88jpQdy1_pz48dprcXh_25ef2e7royq3uyyCQcqItG0XcqTshgnRAAYqNNagtAuOOThtCkBEVmSwVrXFWgcFDTECmLV4_t-NzHwcxsVsvByvf8wfpy5C0g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACIIW.2017.8272618
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538606801
9781538606803
EndPage 29
ExternalDocumentID 8272618
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i1348-8826f13478069e844314c8524b1027c7eec72351444e0834b0b64b2c01d8e4113
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:12 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1348-8826f13478069e844314c8524b1027c7eec72351444e0834b0b64b2c01d8e4113
OpenAccessLink https://opus.bibliothek.uni-augsburg.de/opus4/files/45066/45066.pdf
PageCount 4
ParticipantIDs ieee_primary_8272618
PublicationCentury 2000
PublicationDate 2017-Oct.
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationTitle 2017 Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)
PublicationTitleAbbrev ACIIW
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8021867
Snippet We test the suitability of our novel deep spectrum feature representation for performing speech-based sentiment analysis. Deep spectrum features are formed by...
SourceID ieee
SourceType Publisher
StartPage 26
SubjectTerms Feature extraction
Mel frequency cepstral coefficient
Motion pictures
Spectrogram
Speech
Videos
YouTube
Title Sentiment analysis using image-based deep spectrum features
URI https://ieeexplore.ieee.org/document/8272618
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwMhECVtT57UtMbvcPAo22VLgY0n09i0JjUm2thbA-ysaUw_ou3FX-_M7rZG48EbIRAYCMwD3hsYu0JQHGfaKVzfeUco3CeF7epMOOmddmnI00BXA6MHPRir-0l3UmPXOy0MABTkM4goWbzlZ8uwoauytk0MAn5bZ3U8uJVara0OJk7bt73h8IXIWiaqCv74MaVwGP19Nto2VfJE3qLN2kfh81cUxv_25YC1vqV5_HHndA5ZDRZNdvNEnB-qwF0VZIQTof2Vz-a4XwhyVRnPAFa8UFa-b-Y8hyKk50eLjft3z72BqH5FEDPZUVYgJNY5CUBtrFOwChGACrabKI9YwQQDEExC_HylAPGV8rHXyichlpkFJWXniDUWywUcM25MnmtnpUuwusTzpCO0B4b0qWiGPmFNMny6KgNfTCubT__OPmN7NPgl0-2cNdAYuECPvfaXxVR9AR_flcg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MedCTyib-NgePtmu6NEnxJMOx6TYEN9xtpOmrDNkPdLv41_vS1oniwVsICc0jNN-X5PteAK6IFAepNIL-76zpCVonPR3J1DM8MdLENoutOxroD2RnJO7H0bgC1xsvDCLm4jP0XTG_y08Xdu2Oyho6VET49RZsE-5HvHBrfTlhgrhx2-p2n51cS_ll0x9vpuSQ0d6D_tfHCqXIq79eJb79-JWH8b-j2Yf6tzmPPW5g5wAqOK_BzZNT_bgOzJRpRpiTtL-w6YxWDM-BVcpSxCXLvZVv6xnLME_q-V6HUftu2Op45bsI3pQ3hfaIFMvMWUB1IGPUgjiAsDoKRUJsQVmFaFXoFPpCIDEskQSJFEloA55qFJw3D6E6X8zxCJhSWSaN5iak7px2lMbxPVTOoUphyGOoucAnyyL1xaSM-eTv6kvY6Qz7vUmvO3g4hV03EYXu7QyqFBieE36vkot82j4BJTaZEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+Seventh+International+Conference+on+Affective+Computing+and+Intelligent+Interaction+Workshops+and+Demos+%28ACIIW%29&rft.atitle=Sentiment+analysis+using+image-based+deep+spectrum+features&rft.au=Amiriparian%2C+Shahin&rft.au=Cummins%2C+Nicholas&rft.au=Ottl%2C+Sandra&rft.au=Gerczuk%2C+Maurice&rft.date=2017-10-01&rft.pub=IEEE&rft.spage=26&rft.epage=29&rft_id=info:doi/10.1109%2FACIIW.2017.8272618&rft.externalDocID=8272618