Channel Estimation Based on Deep Learning for OCDM Communications

Orthogonal chirp division multiplexing (OCDM) takes advantage of double spreading in both time and frequency domains for high rate communications. Multipath channels often deteriorate communication performance. Thus, channel estimation is preliminary for equalization to combat multipath. In OCDM sys...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE/CIC International Conference on Communications in China (ICCC) pp. 286 - 290
Main Authors Yang, Daoyong, Wang, Yiyin, Liu, Lingya, Huang, Peishuo
Format Conference Proceeding
LanguageEnglish
Published IEEE 11.08.2022
Subjects
Online AccessGet full text
DOI10.1109/ICCC55456.2022.9880853

Cover

Abstract Orthogonal chirp division multiplexing (OCDM) takes advantage of double spreading in both time and frequency domains for high rate communications. Multipath channels often deteriorate communication performance. Thus, channel estimation is preliminary for equalization to combat multipath. In OCDM systems, either independent pilot blocks are employed or extra null symbols have to be applied to accommodate inter-chirp interference by the conventional channel estimation methods. The bandwidth efficiency is reduced. In this paper, we develop a deep learning (DL) based channel estimation method for OCDM systems. Making use of the power of DL, the requirements of pilot symbols are relaxed and the bandwidth efficiency is increased. Simulation results corroborate the efficiency of the DL-based method compared with the conventional ones.
AbstractList Orthogonal chirp division multiplexing (OCDM) takes advantage of double spreading in both time and frequency domains for high rate communications. Multipath channels often deteriorate communication performance. Thus, channel estimation is preliminary for equalization to combat multipath. In OCDM systems, either independent pilot blocks are employed or extra null symbols have to be applied to accommodate inter-chirp interference by the conventional channel estimation methods. The bandwidth efficiency is reduced. In this paper, we develop a deep learning (DL) based channel estimation method for OCDM systems. Making use of the power of DL, the requirements of pilot symbols are relaxed and the bandwidth efficiency is increased. Simulation results corroborate the efficiency of the DL-based method compared with the conventional ones.
Author Liu, Lingya
Yang, Daoyong
Wang, Yiyin
Huang, Peishuo
Author_xml – sequence: 1
  givenname: Daoyong
  surname: Yang
  fullname: Yang, Daoyong
  email: ydyhll@sjtu.edu.cn
  organization: Shanghai Jiao Tong University,Department of Automation,Shanghai,China
– sequence: 2
  givenname: Yiyin
  surname: Wang
  fullname: Wang, Yiyin
  email: yiyinwang@sjtu.edu.cn
  organization: Shanghai Jiao Tong University,Department of Automation,Shanghai,China
– sequence: 3
  givenname: Lingya
  surname: Liu
  fullname: Liu, Lingya
  email: lyliu@cee.ecnu.edu.cn
  organization: School of Communication and Electronic Engineering, East China Normal University,Shanghai,China
– sequence: 4
  givenname: Peishuo
  surname: Huang
  fullname: Huang, Peishuo
  email: huangpeishuo@163.com
  organization: School of Information and Communication Engineering, Hainan University,Haikou,China
BookMark eNotj8tOwzAURI0ECyj9AiTkH0i4144fWRa3lEpB3cC6cuwbsNQ4VRIW_D0VdDWzOBqduWPXecjE2CNCiQj10845p1SldClAiLK2FqySV2xZG4taq8pWFuCWrdyXz5mOfDPNqfdzGjJ_9hNFfi5rohNvyI855U_eDSPfu_Ubd0Pff-cU_ujpnt10_jjR8pIL9vGyeXevRbPf7tyqKRJKORdkLMRoVDBG10FRVSMaQSh0G0CixxYBYhukNBJB-K61sQukghZBRTBywR7-dxMRHU7j2Xb8OVyOyV-Ph0bz
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCC55456.2022.9880853
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665484800
1665484802
EndPage 290
ExternalDocumentID 9880853
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61773264,61801295
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i133t-e780dd75c7769c5e491172e126bc031a1b100dbc3373102afb8dfce5c62c5d073
IEDL.DBID RIE
IngestDate Thu Jan 18 11:15:02 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-e780dd75c7769c5e491172e126bc031a1b100dbc3373102afb8dfce5c62c5d073
PageCount 5
ParticipantIDs ieee_primary_9880853
PublicationCentury 2000
PublicationDate 2022-Aug.-11
PublicationDateYYYYMMDD 2022-08-11
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug.-11
  day: 11
PublicationDecade 2020
PublicationTitle 2022 IEEE/CIC International Conference on Communications in China (ICCC)
PublicationTitleAbbrev ICCC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8053583
Snippet Orthogonal chirp division multiplexing (OCDM) takes advantage of double spreading in both time and frequency domains for high rate communications. Multipath...
SourceID ieee
SourceType Publisher
StartPage 286
SubjectTerms Channel estimation
Code division multiplexing
Deep learning
Interference
OCDM
Simulation
Spectral efficiency
Symbols
Title Channel Estimation Based on Deep Learning for OCDM Communications
URI https://ieeexplore.ieee.org/document/9880853
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhx6jixk4yQtipIBQYqdav8uCAESitIF3495ySAihjYLMuSH-fzd2f7uyPkwuoodlIKFqmsYDECNjM6BgZK2iQ1Erj2bOTZnZrO49uFXHTI5TcXBgDqz2cQ-GL9lu9WduOvyoYZbjaEly7p4jZruFot6Tfk2fAmz3PpDQL0-oQI2sZbWVNq0JjsktlXd81fkZdgU5nAfvyKxPjf8eyRwQ89jz58A88-6UDZJ1eeJ1DCKx2j0jZ8RHqNEOUoFkYAa9qGUn2iaKfS-3w0o1vskPcBmU_Gj_mUtfkR2DN6lhWDJOXOJbioicqshBgPrkRAKJSxqKs6NCHnztgoStCIE7owqSssSKuElQ51-4D0ylUJh4TyQqQ2TZ3SCFcmFkb7hN8mjAD9DXD8iPT99JfrJgTGsp358d_VJ2THi8BfvYbhKelVbxs4Q-yuzHkttE_Ah5n9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsAEqEW88cBI0sSJ8xghLWqhKQyt1K2K7QtCoLSCduHXc05CUREDm2VZ8uN8_u5sf3cAVyrzfC0Et7wgzi2fANuSmY8WBkKFkRToZIaNnI6C_sS_n4ppA67XXBhELD-foW2K5Vu-nquVuSrrxLTZCF62YJtw3xcVW6um_bpO3BkkSSKMSUB-H-d23Xwjb0oJG3d7kH53WP0WebVXS2mrz1-xGP87on1o_xD02NMaeg6ggUULbgxToMA31iO1rRiJ7JZASjMqdBEXrA6m-szIUmWPSTdlG_yQjzZM7nrjpG_VGRKsF_ItlxaGkaN1SMsaBrES6NPRFXJ0eSAVaWvmStdxtFSeF5IZx7NcRjpXKFTAldCk3YfQLOYFHgFzch6pKNJBRoAlfS4zk_Jbuh6Sx4HaOYaWmf5sUQXBmNUzP_m7-hJ2-uN0OBsORg-nsGvEYS5iXfcMmsv3FZ4Tki_lRSnALwPgnUo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FCIC+International+Conference+on+Communications+in+China+%28ICCC%29&rft.atitle=Channel+Estimation+Based+on+Deep+Learning+for+OCDM+Communications&rft.au=Yang%2C+Daoyong&rft.au=Wang%2C+Yiyin&rft.au=Liu%2C+Lingya&rft.au=Huang%2C+Peishuo&rft.date=2022-08-11&rft.pub=IEEE&rft.spage=286&rft.epage=290&rft_id=info:doi/10.1109%2FICCC55456.2022.9880853&rft.externalDocID=9880853