Hierarchical Local Sensitivity Analysis Method for Optimization of Deep Learning-based Anomaly Detection in Communication Network

Deep learning-based anomaly detection techniques in communication network have been widely researched and generally viewed as a classification problem based on the benign data baseline. However, the model deployment on edge devices is urgent to be optimized as compact structure with robust detection...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE/CIC International Conference on Communications in China (ICCC) pp. 451 - 456
Main Authors Yue, Gang, Sun, Zhuo, Fan, Jinpo
Format Conference Proceeding
LanguageEnglish
Published IEEE 11.08.2022
Subjects
Online AccessGet full text
DOI10.1109/ICCC55456.2022.9880845

Cover

Abstract Deep learning-based anomaly detection techniques in communication network have been widely researched and generally viewed as a classification problem based on the benign data baseline. However, the model deployment on edge devices is urgent to be optimized as compact structure with robust detection capability due to the constraints of computational and storage capacity. This paper proposed a hierarchical local sensitivity analysis (H-LSA) method to quantify the model's sensitive correlations by deriving the "neuron-layer-model" sensitivity matrices. The method provides a perspective on the sensitivity propagation from the basic unit of the deep learning model, i.e., neuron to the overall model. Furthermore, we demonstrate the applications of the hierarchical sensitivity matrices on CNN-based anomaly detection in the industrial control network communication, which shows the remarkable optimization capabilities of structure compression and robustness improvement.
AbstractList Deep learning-based anomaly detection techniques in communication network have been widely researched and generally viewed as a classification problem based on the benign data baseline. However, the model deployment on edge devices is urgent to be optimized as compact structure with robust detection capability due to the constraints of computational and storage capacity. This paper proposed a hierarchical local sensitivity analysis (H-LSA) method to quantify the model's sensitive correlations by deriving the "neuron-layer-model" sensitivity matrices. The method provides a perspective on the sensitivity propagation from the basic unit of the deep learning model, i.e., neuron to the overall model. Furthermore, we demonstrate the applications of the hierarchical sensitivity matrices on CNN-based anomaly detection in the industrial control network communication, which shows the remarkable optimization capabilities of structure compression and robustness improvement.
Author Sun, Zhuo
Fan, Jinpo
Yue, Gang
Author_xml – sequence: 1
  givenname: Gang
  surname: Yue
  fullname: Yue, Gang
  email: yuegang@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications,Key Laboratory of Wireless Signal Processing and Network, Ministry of Education,Beijing,P.R.China,100876
– sequence: 2
  givenname: Zhuo
  surname: Sun
  fullname: Sun, Zhuo
  email: zhuosun@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications,Key Laboratory of Wireless Signal Processing and Network, Ministry of Education,Beijing,P.R.China,100876
– sequence: 3
  givenname: Jinpo
  surname: Fan
  fullname: Fan, Jinpo
  email: fjp@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications,Key Laboratory of Wireless Signal Processing and Network, Ministry of Education,Beijing,P.R.China,100876
BookMark eNotUEtOwzAQNRIsoPQESMgXSLFjO7WXVfi0UqALYF1Nkwkd0diVY0Blx80JpZt50vtKc8FOffDI2LUUEymFu1mUZWmMNsUkF3k-cdYKq80JG7uplUVhtNVWiHP2MyeMEOsN1bDlVfi7z-h7SvRJac9nHrb7nnr-iGkTGt6GyJe7RB19Q6LgeWj5LeKOVwjRk3_L1tBjM-RCNyQHLWF9MJLnZei6Dz8sHYgnTF8hvl-ysxa2PY6POGKv93cv5Tyrlg-LclZlJJVK2VqsjQAEEKBboUxT17kS00bL2imwdupaKa116AxYKRsNrnAGjYVamkKAGrGr_15CxNUuUgdxvzo-Rv0C4pdf4A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCC55456.2022.9880845
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665484800
1665484802
EndPage 456
ExternalDocumentID 9880845
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i133t-b0b50aeaa0a4f035dcc2307d41c93a8879f11889e95a811d4a9695e58ac1560a3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:15:01 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-b0b50aeaa0a4f035dcc2307d41c93a8879f11889e95a811d4a9695e58ac1560a3
PageCount 6
ParticipantIDs ieee_primary_9880845
PublicationCentury 2000
PublicationDate 2022-Aug.-11
PublicationDateYYYYMMDD 2022-08-11
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug.-11
  day: 11
PublicationDecade 2020
PublicationTitle 2022 IEEE/CIC International Conference on Communications in China (ICCC)
PublicationTitleAbbrev ICCC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8051885
Snippet Deep learning-based anomaly detection techniques in communication network have been widely researched and generally viewed as a classification problem based on...
SourceID ieee
SourceType Publisher
StartPage 451
SubjectTerms Analytical models
anomaly detection
Communication network
Computational modeling
Deep learning
Integrated circuits
local sensitivity analysis
Neurons
Robustness
robustness improvement
Sensitivity analysis
structure compression
Title Hierarchical Local Sensitivity Analysis Method for Optimization of Deep Learning-based Anomaly Detection in Communication Network
URI https://ieeexplore.ieee.org/document/9880845
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3PDDiNB92as-BqiBakKBSt8qxL6iCJhVKFzb-OeckLSpiYIuSnGzZlt-d_d4dIVdchVZpHjMtbcy4DTOmIQ6ZNfEgRQCRNnBq5PEkHk35_UzMWuR6q4UBgIp8Bp57rO7ybWHW7qisr3CxSS7apI3LrNZqNaLfwFf9uyRJhHMIMOoLQ6_5eadqSgUaw30y3jRXc0XevHWZeubzVybG__bngPR-5Hn0aQs8h6QFeZd8jRZOS1yVNnmnDw6i6LNjp9flIegm-wgdVzWjKTqr9BH3i2UjxKRFRm8AVrTJuPrKHMBZtCuWaInfyoq1ldNFTndkJXRSU8l7ZDq8fUlGrKmvwBYYmZYs9VPha9Da1zzzI2GNcbRwywOjIo27j8ow_JAKlNAyCCzXKlYChNTG6a91dEQ6eZHDMaEcIDLoGUh0vxAWjcqkRGMQGaTG-uqEdN3wzVd1Co15M3Knf78-I3tuCt3RbRCck075sYYLxP4yvawm_Ru6k7My
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mPOhJzWb8bQ8ehQFrsT2jC9MxTdyS3ZbSPsyiY4thF2_-574C08x48EaAF0hp-r1Xvu99hFwxGRipWOgoYUKHmSBzFISBY3R4kyKACONbNXIyDOMxu5_wSYNcf2thAKAkn4FrD8t_-WahV3arrCNxsgnGt8g24j7jlVqrlv36nuz0oyjiNiXAui8I3Pr2Dd-UEjZ6eyRZP7Bii7y6qyJ19cevXoz_faN90v4R6NGnb-g5IA3IW-Qznlk1cWlu8kYHFqTos-WnVwYRdN1_hCalazTFdJU-4ooxr6WYdJHRW4AlrXuuvjgW4gzGLeYYideKkreV01lON4QldFiRydtk3LsbRbFTOyw4M6xNCyf1Uu4pUMpTLPO63GhtieGG-Vp2Fa4_MsMCREiQXAnfN0zJUHLgQmmrwFbdQ9LMFzkcEcoAuhpzA4EJGAKjlpkQGAw8g1QbTx6Tlh2-6bJqojGtR-7k79OXZCceJYPpoD98OCW79nPajVzfPyPN4n0F55gJFOlFOQG-AEVNtn8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FCIC+International+Conference+on+Communications+in+China+%28ICCC%29&rft.atitle=Hierarchical+Local+Sensitivity+Analysis+Method+for+Optimization+of+Deep+Learning-based+Anomaly+Detection+in+Communication+Network&rft.au=Yue%2C+Gang&rft.au=Sun%2C+Zhuo&rft.au=Fan%2C+Jinpo&rft.date=2022-08-11&rft.pub=IEEE&rft.spage=451&rft.epage=456&rft_id=info:doi/10.1109%2FICCC55456.2022.9880845&rft.externalDocID=9880845