Omni-Supervised Domain Adversarial Training for White Matter Hyperintensity Segmentation in the UK Biobank

White matter hyperintensities (WMHs, or lesions) appear as hyperintense, localized regions on T2-weighted and FLAIR brain MR images. The heterogeneity in lesion characteristics due to subject-level (e.g., local intensity/contrast) and population-level (e.g., demographic, scanner-related) variations...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) pp. 1 - 4
Main Authors Sundaresan, Vaanathi, Dinsdale, Nicola K, Jenkinson, Mark, Griffanti, Ludovica
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract White matter hyperintensities (WMHs, or lesions) appear as hyperintense, localized regions on T2-weighted and FLAIR brain MR images. The heterogeneity in lesion characteristics due to subject-level (e.g., local intensity/contrast) and population-level (e.g., demographic, scanner-related) variations make their segmentation highly challenging. Here, we propose a framework for adapting a state-of-the-art WMH segmentation method with high accuracy from a small, labeled source data (MICCAI WMH segmentation challenge 2017 training data) to a larger dataset such as the UK Biobank without the need of additional manual training labels, using domain adversarial training with omni-supervised learning. Given the well-known association of WMHs with age, the proposed method uses a multi-tasking model for learning lesion segmentation, domain adaptation and age prediction simultaneously. On a subset of the UK Biobank dataset, the proposed method achieves a lesion-level recall, lesion-level F1-measure and Dice overlap value of 0.95, 0.65 and 0.84 respectively, when compared to values of 0.75, 0.49 and 0.80 obtained from the pretrained state-of-the-art baseline method. The code for the method is available at https://github.com/v-sundaresan/omnisup_agepred_semidann.
AbstractList White matter hyperintensities (WMHs, or lesions) appear as hyperintense, localized regions on T2-weighted and FLAIR brain MR images. The heterogeneity in lesion characteristics due to subject-level (e.g., local intensity/contrast) and population-level (e.g., demographic, scanner-related) variations make their segmentation highly challenging. Here, we propose a framework for adapting a state-of-the-art WMH segmentation method with high accuracy from a small, labeled source data (MICCAI WMH segmentation challenge 2017 training data) to a larger dataset such as the UK Biobank without the need of additional manual training labels, using domain adversarial training with omni-supervised learning. Given the well-known association of WMHs with age, the proposed method uses a multi-tasking model for learning lesion segmentation, domain adaptation and age prediction simultaneously. On a subset of the UK Biobank dataset, the proposed method achieves a lesion-level recall, lesion-level F1-measure and Dice overlap value of 0.95, 0.65 and 0.84 respectively, when compared to values of 0.75, 0.49 and 0.80 obtained from the pretrained state-of-the-art baseline method. The code for the method is available at https://github.com/v-sundaresan/omnisup_agepred_semidann.
Author Griffanti, Ludovica
Sundaresan, Vaanathi
Jenkinson, Mark
Dinsdale, Nicola K
Author_xml – sequence: 1
  givenname: Vaanathi
  surname: Sundaresan
  fullname: Sundaresan, Vaanathi
  organization: University of Oxford,Wellcome Centre for Integrative Neuroimaging,UK
– sequence: 2
  givenname: Nicola K
  surname: Dinsdale
  fullname: Dinsdale, Nicola K
  organization: University of Oxford,Wellcome Centre for Integrative Neuroimaging,UK
– sequence: 3
  givenname: Mark
  surname: Jenkinson
  fullname: Jenkinson, Mark
  organization: University of Oxford,Wellcome Centre for Integrative Neuroimaging,UK
– sequence: 4
  givenname: Ludovica
  surname: Griffanti
  fullname: Griffanti, Ludovica
  organization: University of Oxford,Wellcome Centre for Integrative Neuroimaging,UK
BookMark eNotkM1qwkAUhaelhar1CQplXiA2c5PJZJZqf5RaXKh0KTeZGx1rJjKZCr59A_VsDhz4vsXpszvXOGLsWcQjIWL9Ml9N5hJy0COIAUZaZUIm-ob1RZbJFDQkcMt6QqcyylMJD2zYtoe4i0rTJE577LCsnY1WvyfyZ9uS4a9NjdbxsTmTb9FbPPK17xbrdrxqPP_e20D8C0Mgz2eXjrMukGttuPAV7WpyAYNtHO8kYU9888kntinQ_Tyy-wqPLQ2vPWCb97f1dBYtlh_z6XgRWZEkIcKSVK5MbjBWWpeiqEos0UBloACB0ihCVZQyzgAUCS2KHBWZKjWilBnIZMCe_r2WiLYnb2v0l-31muQPSERdFg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI52829.2022.9761539
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665429232
9781665429238
EISSN 1945-8452
EndPage 4
ExternalDocumentID 9761539
Genre orig-research
GrantInformation_xml – fundername: Wellcome Trust
  funderid: 10.13039/100010269
– fundername: National Institute for Health Research
  funderid: 10.13039/501100000272
– fundername: Medical Research Council
  funderid: 10.13039/501100000265
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i133t-ace787d8da0799c1bfcacad2fd2b21a5d7ea7bc506227e191b8a7edf4d1c56253
IEDL.DBID RIE
IngestDate Fri Jul 18 03:48:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-ace787d8da0799c1bfcacad2fd2b21a5d7ea7bc506227e191b8a7edf4d1c56253
PageCount 4
ParticipantIDs ieee_primary_9761539
PublicationCentury 2000
PublicationDate 2022-March-28
PublicationDateYYYYMMDD 2022-03-28
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-March-28
  day: 28
PublicationDecade 2020
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.2068753
Snippet White matter hyperintensities (WMHs, or lesions) appear as hyperintense, localized regions on T2-weighted and FLAIR brain MR images. The heterogeneity in...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms adversarial training
Biological system modeling
Codes
domain adaptation
Image segmentation
Multitasking
omni-supervised learning
Predictive models
Training
Training data
UK Biobank
white matter hyperintensities
Title Omni-Supervised Domain Adversarial Training for White Matter Hyperintensity Segmentation in the UK Biobank
URI https://ieeexplore.ieee.org/document/9761539
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ734AOM7e_DoFrp9bHtFJaBBTYCEG9nuTk0lFCLtAX-9s23FRzx4azbpI7vdmfl25vuGkCsH3baWwmfAOTA0eAGTni2ZisBWgAGCKOhiw0e_P3Hvp960Rq63XBgAKIrPwDKXRS5fL1Vujsra6Dpxg4Z1UkfgVnK1tucp6ApdhOYVCdjuhO3BqDvwTKIQUSDnVnXzjy4qhRPp7ZHh5-vL2pG5lWeRpd5_KTP-9_v2SeuLrkeft47ogNQgPSS735QGm-T1aZEmbJSvjGlYg6a3y4VMUlr0Y15L8xfScdUtgmIcS4vGeXRYqG_S_sboIZfF7tmGjuBlUVGWUooPwRiSTh5oN0HbkM5bZNK7G9_0WdVmgSUIUDMmFeCu1YGWHRGGyo5iJZXUPNY84rb0tAApIuV1fM4FIL6LAilAx662lYFPzhFppMsUjgnFMRk4scuVAgSmXuSKADGJyX0q0I5_Qppm1marUkljVk3Y6d_DZ2THrJyp-OLBOWlkbzlcYAiQRZfF2n8A-LmzGg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHtSLDzC-3YNHW-j2fUUlRSiaAAk3st2dGiQUIu0Bf72zbcVHPHhrNmmz2e7ON9_OfDOE3JgI25K7jgaMgYYGz9O4bXBNRGAIQAfBzeViYd8JRtbj2B5XyO1GCwMAefIZ6Ooxj-XLhcjUVVkDoRMPqL9FthH3baNQa21uVBAMLSTnpQzYaPqNzqDVsVWoEHkgY3r5-o8-KjmMtPdJ-DmBIntkpmdppIv3X7UZ_zvDA1L_EuzR5w0UHZIKJEdk71utwRp5fZonU22QLZVxWIGk94s5nyY078i84mof0mHZL4KiJ0vz1nk0zOtv0mCtKiIX6e7pmg7gZV6KlhKKH0Evko66tDVF65DM6mTUfhjeBVrZaEGbIkVNNS4Az630JG-6vi-MKBZccMliySJmcFu6wN1I2E2HMReQ4UUed0HGljSEIlDmMakmiwROCMUx7pmxxYQApKZ2ZLkeshIV_RQgTeeU1NSqTZZFLY1JuWBnfw9fk51gGPYmvU6_e0521V9U-V_MuyDV9C2DS3QI0ugq3wcfe9G2Yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Omni-Supervised+Domain+Adversarial+Training+for+White+Matter+Hyperintensity+Segmentation+in+the+UK+Biobank&rft.au=Sundaresan%2C+Vaanathi&rft.au=Dinsdale%2C+Nicola+K&rft.au=Jenkinson%2C+Mark&rft.au=Griffanti%2C+Ludovica&rft.date=2022-03-28&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISBI52829.2022.9761539&rft.externalDocID=9761539