Omni-Supervised Domain Adversarial Training for White Matter Hyperintensity Segmentation in the UK Biobank
White matter hyperintensities (WMHs, or lesions) appear as hyperintense, localized regions on T2-weighted and FLAIR brain MR images. The heterogeneity in lesion characteristics due to subject-level (e.g., local intensity/contrast) and population-level (e.g., demographic, scanner-related) variations...
Saved in:
Published in | Proceedings (International Symposium on Biomedical Imaging) pp. 1 - 4 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
28.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | White matter hyperintensities (WMHs, or lesions) appear as hyperintense, localized regions on T2-weighted and FLAIR brain MR images. The heterogeneity in lesion characteristics due to subject-level (e.g., local intensity/contrast) and population-level (e.g., demographic, scanner-related) variations make their segmentation highly challenging. Here, we propose a framework for adapting a state-of-the-art WMH segmentation method with high accuracy from a small, labeled source data (MICCAI WMH segmentation challenge 2017 training data) to a larger dataset such as the UK Biobank without the need of additional manual training labels, using domain adversarial training with omni-supervised learning. Given the well-known association of WMHs with age, the proposed method uses a multi-tasking model for learning lesion segmentation, domain adaptation and age prediction simultaneously. On a subset of the UK Biobank dataset, the proposed method achieves a lesion-level recall, lesion-level F1-measure and Dice overlap value of 0.95, 0.65 and 0.84 respectively, when compared to values of 0.75, 0.49 and 0.80 obtained from the pretrained state-of-the-art baseline method. The code for the method is available at https://github.com/v-sundaresan/omnisup_agepred_semidann. |
---|---|
AbstractList | White matter hyperintensities (WMHs, or lesions) appear as hyperintense, localized regions on T2-weighted and FLAIR brain MR images. The heterogeneity in lesion characteristics due to subject-level (e.g., local intensity/contrast) and population-level (e.g., demographic, scanner-related) variations make their segmentation highly challenging. Here, we propose a framework for adapting a state-of-the-art WMH segmentation method with high accuracy from a small, labeled source data (MICCAI WMH segmentation challenge 2017 training data) to a larger dataset such as the UK Biobank without the need of additional manual training labels, using domain adversarial training with omni-supervised learning. Given the well-known association of WMHs with age, the proposed method uses a multi-tasking model for learning lesion segmentation, domain adaptation and age prediction simultaneously. On a subset of the UK Biobank dataset, the proposed method achieves a lesion-level recall, lesion-level F1-measure and Dice overlap value of 0.95, 0.65 and 0.84 respectively, when compared to values of 0.75, 0.49 and 0.80 obtained from the pretrained state-of-the-art baseline method. The code for the method is available at https://github.com/v-sundaresan/omnisup_agepred_semidann. |
Author | Griffanti, Ludovica Sundaresan, Vaanathi Jenkinson, Mark Dinsdale, Nicola K |
Author_xml | – sequence: 1 givenname: Vaanathi surname: Sundaresan fullname: Sundaresan, Vaanathi organization: University of Oxford,Wellcome Centre for Integrative Neuroimaging,UK – sequence: 2 givenname: Nicola K surname: Dinsdale fullname: Dinsdale, Nicola K organization: University of Oxford,Wellcome Centre for Integrative Neuroimaging,UK – sequence: 3 givenname: Mark surname: Jenkinson fullname: Jenkinson, Mark organization: University of Oxford,Wellcome Centre for Integrative Neuroimaging,UK – sequence: 4 givenname: Ludovica surname: Griffanti fullname: Griffanti, Ludovica organization: University of Oxford,Wellcome Centre for Integrative Neuroimaging,UK |
BookMark | eNotkM1qwkAUhaelhar1CQplXiA2c5PJZJZqf5RaXKh0KTeZGx1rJjKZCr59A_VsDhz4vsXpszvXOGLsWcQjIWL9Ml9N5hJy0COIAUZaZUIm-ob1RZbJFDQkcMt6QqcyylMJD2zYtoe4i0rTJE577LCsnY1WvyfyZ9uS4a9NjdbxsTmTb9FbPPK17xbrdrxqPP_e20D8C0Mgz2eXjrMukGttuPAV7WpyAYNtHO8kYU9888kntinQ_Tyy-wqPLQ2vPWCb97f1dBYtlh_z6XgRWZEkIcKSVK5MbjBWWpeiqEos0UBloACB0ihCVZQyzgAUCS2KHBWZKjWilBnIZMCe_r2WiLYnb2v0l-31muQPSERdFg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISBI52829.2022.9761539 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1665429232 9781665429238 |
EISSN | 1945-8452 |
EndPage | 4 |
ExternalDocumentID | 9761539 |
Genre | orig-research |
GrantInformation_xml | – fundername: Wellcome Trust funderid: 10.13039/100010269 – fundername: National Institute for Health Research funderid: 10.13039/501100000272 – fundername: Medical Research Council funderid: 10.13039/501100000265 |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i133t-ace787d8da0799c1bfcacad2fd2b21a5d7ea7bc506227e191b8a7edf4d1c56253 |
IEDL.DBID | RIE |
IngestDate | Fri Jul 18 03:48:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i133t-ace787d8da0799c1bfcacad2fd2b21a5d7ea7bc506227e191b8a7edf4d1c56253 |
PageCount | 4 |
ParticipantIDs | ieee_primary_9761539 |
PublicationCentury | 2000 |
PublicationDate | 2022-March-28 |
PublicationDateYYYYMMDD | 2022-03-28 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-March-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
PublicationTitleAbbrev | ISBI |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 |
Score | 2.2068753 |
Snippet | White matter hyperintensities (WMHs, or lesions) appear as hyperintense, localized regions on T2-weighted and FLAIR brain MR images. The heterogeneity in... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | adversarial training Biological system modeling Codes domain adaptation Image segmentation Multitasking omni-supervised learning Predictive models Training Training data UK Biobank white matter hyperintensities |
Title | Omni-Supervised Domain Adversarial Training for White Matter Hyperintensity Segmentation in the UK Biobank |
URI | https://ieeexplore.ieee.org/document/9761539 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ734AOM7e_DoFrp9bHtFJaBBTYCEG9nuTk0lFCLtAX-9s23FRzx4azbpI7vdmfl25vuGkCsH3baWwmfAOTA0eAGTni2ZisBWgAGCKOhiw0e_P3Hvp960Rq63XBgAKIrPwDKXRS5fL1Vujsra6Dpxg4Z1UkfgVnK1tucp6ApdhOYVCdjuhO3BqDvwTKIQUSDnVnXzjy4qhRPp7ZHh5-vL2pG5lWeRpd5_KTP-9_v2SeuLrkeft47ogNQgPSS735QGm-T1aZEmbJSvjGlYg6a3y4VMUlr0Y15L8xfScdUtgmIcS4vGeXRYqG_S_sboIZfF7tmGjuBlUVGWUooPwRiSTh5oN0HbkM5bZNK7G9_0WdVmgSUIUDMmFeCu1YGWHRGGyo5iJZXUPNY84rb0tAApIuV1fM4FIL6LAilAx662lYFPzhFppMsUjgnFMRk4scuVAgSmXuSKADGJyX0q0I5_Qppm1marUkljVk3Y6d_DZ2THrJyp-OLBOWlkbzlcYAiQRZfF2n8A-LmzGg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHtSLDzC-3YNHW-j2fUUlRSiaAAk3st2dGiQUIu0Bf72zbcVHPHhrNmmz2e7ON9_OfDOE3JgI25K7jgaMgYYGz9O4bXBNRGAIQAfBzeViYd8JRtbj2B5XyO1GCwMAefIZ6Ooxj-XLhcjUVVkDoRMPqL9FthH3baNQa21uVBAMLSTnpQzYaPqNzqDVsVWoEHkgY3r5-o8-KjmMtPdJ-DmBIntkpmdppIv3X7UZ_zvDA1L_EuzR5w0UHZIKJEdk71utwRp5fZonU22QLZVxWIGk94s5nyY078i84mof0mHZL4KiJ0vz1nk0zOtv0mCtKiIX6e7pmg7gZV6KlhKKH0Evko66tDVF65DM6mTUfhjeBVrZaEGbIkVNNS4Az630JG-6vi-MKBZccMliySJmcFu6wN1I2E2HMReQ4UUed0HGljSEIlDmMakmiwROCMUx7pmxxYQApKZ2ZLkeshIV_RQgTeeU1NSqTZZFLY1JuWBnfw9fk51gGPYmvU6_e0521V9U-V_MuyDV9C2DS3QI0ugq3wcfe9G2Yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Omni-Supervised+Domain+Adversarial+Training+for+White+Matter+Hyperintensity+Segmentation+in+the+UK+Biobank&rft.au=Sundaresan%2C+Vaanathi&rft.au=Dinsdale%2C+Nicola+K&rft.au=Jenkinson%2C+Mark&rft.au=Griffanti%2C+Ludovica&rft.date=2022-03-28&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISBI52829.2022.9761539&rft.externalDocID=9761539 |