Finger Vein Recognition and Intra-Subject Similarity Evaluation of Finger Veins using the CNN Triplet Loss

Finger vein recognition deals with the identification of subjects based on their venous pattern within the fingers. There is a lot of prior work using hand crafted features, but only little work using CNN based recognition systems. This article proposes a new approach using CNNs that utilizes the tr...

Full description

Saved in:
Bibliographic Details
Published in2020 25th International Conference on Pattern Recognition (ICPR) pp. 400 - 406
Main Authors Wimmer, Georg, Prommegger, Bernhard, Uhl, Andreas
Format Conference Proceeding
LanguageEnglish
Published IEEE 10.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Finger vein recognition deals with the identification of subjects based on their venous pattern within the fingers. There is a lot of prior work using hand crafted features, but only little work using CNN based recognition systems. This article proposes a new approach using CNNs that utilizes the triplet loss function together with hard triplet online selection for finger vein recognition. The CNNs are used for three different use cases: (1) the classical recognition use case, where every finger of a subject is considered as a separate class, (2) an evaluation of the similarity of left and right hand fingers from the same subject and (3) an evaluation of the similarity of different fingers of the same subject. The results show that the proposed nets achieve superior results compared to prior work on finger vein recognition using the triplet loss function. Furtherly, we show that different fingers of the same subject, especially symmetric fingers (same finger type but from different hand), show enough similarities to perform recognition. The last statement contradicts the current understanding in the literature for finger vein biometry, in which it is assumed that different fingers of the same subject are unique identities.
AbstractList Finger vein recognition deals with the identification of subjects based on their venous pattern within the fingers. There is a lot of prior work using hand crafted features, but only little work using CNN based recognition systems. This article proposes a new approach using CNNs that utilizes the triplet loss function together with hard triplet online selection for finger vein recognition. The CNNs are used for three different use cases: (1) the classical recognition use case, where every finger of a subject is considered as a separate class, (2) an evaluation of the similarity of left and right hand fingers from the same subject and (3) an evaluation of the similarity of different fingers of the same subject. The results show that the proposed nets achieve superior results compared to prior work on finger vein recognition using the triplet loss function. Furtherly, we show that different fingers of the same subject, especially symmetric fingers (same finger type but from different hand), show enough similarities to perform recognition. The last statement contradicts the current understanding in the literature for finger vein biometry, in which it is assumed that different fingers of the same subject are unique identities.
Author Uhl, Andreas
Wimmer, Georg
Prommegger, Bernhard
Author_xml – sequence: 1
  givenname: Georg
  surname: Wimmer
  fullname: Wimmer, Georg
  email: gwimmer@cs.sbg.ac.at
  organization: University of Salzburg,Department of Computer Sciences,Salzburg,Austria
– sequence: 2
  givenname: Bernhard
  surname: Prommegger
  fullname: Prommegger, Bernhard
  email: bprommeg@cs.sbg.ac.at
  organization: University of Salzburg,Department of Computer Sciences,Salzburg,Austria
– sequence: 3
  givenname: Andreas
  surname: Uhl
  fullname: Uhl, Andreas
  email: uhl@cs.sbg.ac.at
  organization: University of Salzburg,Department of Computer Sciences,Salzburg,Austria
BookMark eNpNj11LwzAYhSPohZv-AkHeP9CZL9PkUsqmhTJlm96OLH0zM7p0tKmwf7-hu_DqcDgPD5wRuY5tREIeGZ0wRs1TWXwspNZUTTjlbGIkE1TRKzJiOdfsPGhxS3azELfYwReGCAt07TaGFNoINtZQxtTZbDlsdugSLMM-NLYL6QjTH9sM9pdrPfxT9DD05wbpG6GYz2HVhUODCaq27-_IjbdNj_eXHJPP2XRVvGXV-2tZvFRZYEKkzHgjOcu9QGc2WkmslaiZRYW11nnuPDXyWXJBnUTG0VpTc_RGCeUUV2jFmDz8eQMirg9d2NvuuL7cFyf7p1X7
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR48806.2021.9413060
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728188083
9781728188089
EndPage 406
ExternalDocumentID 9413060
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i133t-9f94217f3ec9b864ed63d1ae6ed8877cf09454230c4e12eaa9d2ef9636c626ea3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:15 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-9f94217f3ec9b864ed63d1ae6ed8877cf09454230c4e12eaa9d2ef9636c626ea3
PageCount 7
ParticipantIDs ieee_primary_9413060
PublicationCentury 2000
PublicationDate 2021-Jan.-10
PublicationDateYYYYMMDD 2021-01-10
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2020 25th International Conference on Pattern Recognition (ICPR)
PublicationTitleAbbrev ICPR
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.1817887
Snippet Finger vein recognition deals with the identification of subjects based on their venous pattern within the fingers. There is a lot of prior work using hand...
SourceID ieee
SourceType Publisher
StartPage 400
SubjectTerms Fingers
Pattern recognition
Robustness
Veins
Title Finger Vein Recognition and Intra-Subject Similarity Evaluation of Finger Veins using the CNN Triplet Loss
URI https://ieeexplore.ieee.org/document/9413060
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gJ09qwPidOXh0S7dfsGcCASOEIBhuZLs7a9DYGiwXf72zpeJHPHhrmqbb7Lbz5r2-mWXsuk0gYoUKeRr7yKPE-FwGIuSBSVWM2kpTtl0cjZPBPLpdxIsau9nVwiBiaT5Dzx2W__JNrjdOKmtJF3ETIuh7RNy2tVpV0a_wZWvYnUzd6-iMB4Hwqot_7JpSgkb_gI0-h9t6RZ69TZF6-v1XJ8b_Ps8ha36V58FkBzxHrIZZgz31S4EOHnCVwfTTFpRnoDIDQyfhcgoSTnWB-9XLiggt5d_Q2zX7htzCt1u8gXPEPwLlh9Adj2G2dop8AXcEqk027_dm3QGvNlLgK6KgBZdWRkQ9bIhapp0kQpOERihM0FCMaWtLHC-mvMrXEYoAlZImQEufZqKJ76AKj1k9yzM8YWCEMVa1U43CRiaNZIhKxB0ZKOsG8U9Zw83T8nXbK2NZTdHZ36fP2b5bKydpCP-C1Yv1Bi8J5Iv0qlzdD5nNqiw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOhJjRi_3YNHt3T7BXsmEFBoCILhRra7s6YaW4Pl4q93thT8iAdvTdN0m9123rzXN7OE3LQQRAyXPktCF1gQaZcJj_vM04kMQRmhy7aLozjqz4K7eTivkdttLQwAlOYzcOxh-S9f52plpbKmsBE3QoK-g7gfeutqrarsl7uiOeiMJ_aFtNYDjzvV5T_2TSlho7dPRpsB126RF2dVJI76-NWL8b9PdEAaXwV6dLyFnkNSg-yIPPdKiY4-QprRycYYlGdUZpoOrIjLMExY3YU-pK8pUlrMwGl32-6b5oZ-u8U7tZ74J4oZIu3EMZ0urSZf0CHCaoPMet1pp8-qrRRYiiS0YMKIAMmH8UGJpB0FoCNfcwkRaIwyLWWQ5YWYWbkqAO6BlEJ7YPDjjBQyHpD-MalneQYnhGqutZGtRAE3gU4C4YPkYVt40thB3FNyZOdp8bbulrGopujs79PXZLc_HQ0Xw0F8f0727LpZgYO7F6ReLFdwiZBfJFflSn8CqT2tdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+25th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=Finger+Vein+Recognition+and+Intra-Subject+Similarity+Evaluation+of+Finger+Veins+using+the+CNN+Triplet+Loss&rft.au=Wimmer%2C+Georg&rft.au=Prommegger%2C+Bernhard&rft.au=Uhl%2C+Andreas&rft.date=2021-01-10&rft.pub=IEEE&rft.spage=400&rft.epage=406&rft_id=info:doi/10.1109%2FICPR48806.2021.9413060&rft.externalDocID=9413060