A methodology for estimating soil quality indicators in agricultural systems using UAV and machine learning

The farmers require methodologies to estimate soil quality indicators (SQI) using low-cost technologies for data collection and processing, combined with traditional soil quality assessment tools. Therefore, this work presents a methodology to estimate SQI in agricultural systems at a local scale, b...

Full description

Saved in:
Bibliographic Details
Published in2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS) pp. 1 - 5
Main Authors Diaz-Gonzalez, Freddy A., Correa-Florez, Carlos A., Vuelvas, Jose, Vallejo, Victoria E., Patino, D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The farmers require methodologies to estimate soil quality indicators (SQI) using low-cost technologies for data collection and processing, combined with traditional soil quality assessment tools. Therefore, this work presents a methodology to estimate SQI in agricultural systems at a local scale, based machine learning (ML) regression models to process georeferenced-multimencional database. The results of the regressions of the analyzed SQI presented are consistent with literature, as to establish a SQIs estimation model based on ML algorithms.
AbstractList The farmers require methodologies to estimate soil quality indicators (SQI) using low-cost technologies for data collection and processing, combined with traditional soil quality assessment tools. Therefore, this work presents a methodology to estimate SQI in agricultural systems at a local scale, based machine learning (ML) regression models to process georeferenced-multimencional database. The results of the regressions of the analyzed SQI presented are consistent with literature, as to establish a SQIs estimation model based on ML algorithms.
Author Vallejo, Victoria E.
Patino, D.
Correa-Florez, Carlos A.
Diaz-Gonzalez, Freddy A.
Vuelvas, Jose
Author_xml – sequence: 1
  givenname: Freddy A.
  surname: Diaz-Gonzalez
  fullname: Diaz-Gonzalez, Freddy A.
  email: fdiazg1@ucentral.edu.co
  organization: Universidad Central,Facultad de Ingeniería y Ciencias Básicas,Bogotá,Colombia
– sequence: 2
  givenname: Carlos A.
  surname: Correa-Florez
  fullname: Correa-Florez, Carlos A.
  email: carlosa-correaf@javeriana.edu.co
  organization: Pontificia Universidad Javeriana,Dept. Electronics,Bogotá,Colombia
– sequence: 3
  givenname: Jose
  surname: Vuelvas
  fullname: Vuelvas, Jose
  email: vuelvasj@javeriana.edu.co
  organization: Pontificia Universidad Javeriana,Dept. Electronics,Bogotá,Colombia
– sequence: 4
  givenname: Victoria E.
  surname: Vallejo
  fullname: Vallejo, Victoria E.
  email: evallejoq@ucentral.edu.co
  organization: Universidad Central,Facultad de Ingeniería y Ciencias Básicas,Bogotá,Colombia
– sequence: 5
  givenname: D.
  surname: Patino
  fullname: Patino, D.
  email: patino-d@javeriana.edu.co
  organization: Pontificia Universidad Javeriana,Dept. Electronics,Bogotá,Colombia
BookMark eNotkE1LAzEYhKMo2Nb-Ai_B-6752CSbYynVFgqKtXos6eZNG83u6iZ72H9vxZ5mYHgGZsboqmkbQOiekpxSoh8-lqvNy-J1IyRVZc4IY7nWQhBZXqAxlVIUikhNLtGIUVFmkil5g6YxfhJCKC8KUhQj9DXDNaRja9vQHgbs2g5DTL42yTcHHFsf8E9vgk8D9o31lUltF08Wm0Pnqz6kvjMBxyEmqCPu4x-1nb1j01hcm-roG8ABTNecglt07UyIMD3rBG0fF2_zZbZ-flrNZ-vMU85TVgoBhpaVsUobUVlwYC1z1klVOKbEnjOhrRXAQHFheKkKVRntnK0U0HLPJ-juv9cDwO67O63pht35G_4L2nJfrg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WHISPERS56178.2022.9955068
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISBN 1665470690
9781665470698
EISSN 2158-6276
EndPage 5
ExternalDocumentID 9955068
Genre orig-research
GrantInformation_xml – fundername: Pontificia Universidad Javeriana
  funderid: 10.13039/501100009543
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i133t-855ea18cad79a5cdefedd2fdf674f275b3259dd5e2e735a38747ca9ffdc7e18b3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:31 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-855ea18cad79a5cdefedd2fdf674f275b3259dd5e2e735a38747ca9ffdc7e18b3
PageCount 5
ParticipantIDs ieee_primary_9955068
PublicationCentury 2000
PublicationDate 2022-Sept.-13
PublicationDateYYYYMMDD 2022-09-13
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.-13
  day: 13
PublicationDecade 2020
PublicationTitle 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS)
PublicationTitleAbbrev WHISPERS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001344044
Score 1.8555549
Snippet The farmers require methodologies to estimate soil quality indicators (SQI) using low-cost technologies for data collection and processing, combined with...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Agricultural Systems
Analytical models
Autonomous aerial vehicles
Machine learning
Maximum likelihood estimation
Remote Sensing
Signal processing algorithms
Soil
Soil Quality Indicators
UAV
Title A methodology for estimating soil quality indicators in agricultural systems using UAV and machine learning
URI https://ieeexplore.ieee.org/document/9955068
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwHG2Qi578AON3evDoxr66rkdiIGiCISLKjfTj10nQYWAc8K-33SZE48Fbs8PStMv63q_vvR9C11pSokMROxGTiRPJWDtce8LRHjOAWZpvjFg3cv8h7o2i-zEZ19DNxgsDAIX4DFw7LO7y1VyubKmsxZjB03Gyg3YoY6VXa1tPCW3SXVTlivoea7307oaDzuOQWBecYYJB4FYv-NFJpThIuvuo_z2FUj8yc1e5cOXnr3TG_87xADW3lj082BxGh6gG2RHarVqcv64baNbGZbfooo6ODVbFNmDDAtYsxcv59A2XBss1ttfY0pLxpRlini42-Ry4DH5eYiuXT_Go_Yx5pvB7ocgEXLWgSJto1O083facqtOCMzUcNXcSQoD7ieSKMk6kAg1KBVrpmEY6oESEhiUpRSAAGhIeJoaESM60VpKCn4jwGNWzeQYnCCc6UiA49XSgLNrioKX5JzASAIFQiFPUsIs2-SjDNCbVep39_fgc7dmNswINP7xA9XyxgkuDAnJxVWz_F0rCtiQ
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD3jyA4zf9uDRjbGt-zgSAxkKhAioN9KPt5Ogw8A44K-33SZE48HTmh2apm3a5337Ps-D0I3kPpEO8ww35IHhck8aVFrMkFaoADNXe4xoNnKv70Vj9_6FvJTQ7YYLAwBZ8RmYupm95Ys5X-lUWT0MFZ72gh20q76Bl7O1thkVR2vduYWyaMMK689RZzhoPQ6J5sGpWNC2zaKLH14q2VXS3ke970HkFSQzc5Uyk3_-0mf87ygPUG1L2sODzXV0iEqQHKFKYXL-uq6iWRPnftFZJh0rtIq1xIaGrEmMl_PpG84plmusH7K5DseXqolpvNgodOBc-nmJdcF8jMfNJ0wTgd-zmkzAhQlFXEPjdmt0FxmF14IxVVFqagSEAG0EnAo_pIQLkCCELYX0fFfaPmGOipOEIGCD7xDqBCoM4TSUUnAfGgFzjlE5mSdwgnAgXQGM-pa0hcZbFCRXp0JIbCDgMHaKqnrSJh-5nMakmK-zv39fo0o06nUn3U7_4Rzt6UXU5RoN5wKV08UKLhUmSNlVthW-APhhuW8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+12th+Workshop+on+Hyperspectral+Imaging+and+Signal+Processing%3A+Evolution+in+Remote+Sensing+%28WHISPERS%29&rft.atitle=A+methodology+for+estimating+soil+quality+indicators+in+agricultural+systems+using+UAV+and+machine+learning&rft.au=Diaz-Gonzalez%2C+Freddy+A.&rft.au=Correa-Florez%2C+Carlos+A.&rft.au=Vuelvas%2C+Jose&rft.au=Vallejo%2C+Victoria+E.&rft.date=2022-09-13&rft.pub=IEEE&rft.eissn=2158-6276&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FWHISPERS56178.2022.9955068&rft.externalDocID=9955068