A Detailed Chemical Model for the Diffusion of Phosphorus Into the Silicon Wafer During POCl3 Diffusion

The POCl 3 diffusion is the main technology to form the p-n junction of industrial silicon solar cells. However, the diffusion mechanism of phosphorus (P) into the silicon wafer is not fully understood. In this article, we study the P diffusion mechanism during drive-in by systematically varying the...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of photovoltaics Vol. 11; no. 1; pp. 50 - 57
Main Authors Jager, Philip, Mertens, Verena, Baumann, Ulrike, Dullweber, Thorsten
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The POCl 3 diffusion is the main technology to form the p-n junction of industrial silicon solar cells. However, the diffusion mechanism of phosphorus (P) into the silicon wafer is not fully understood. In this article, we study the P diffusion mechanism during drive-in by systematically varying the drive-in time in the oxygen (O 2 ) atmosphere and subsequently in nitrogen (N 2 ). When increasing the drive-in time in O 2 from 0 to 120 min, the sheet resistance R sheet stays constant at 485±30 Ω/sq. Hence, we demonstrate for the first time that the phosphorus diffusion can be completely suppressed in the O 2 atmosphere. When adding a drive-in in the N 2 atmosphere directly after the drive-in in O 2 , we find that the SiO 2 thickness d SiO2,O2 changes from initially 2 to 10 nm after O 2 drive-in to an equilibrium SiO 2 thickness d SiO2,eq of 4.7 nm after N 2 drive-in. We prove for the first time that if d SiO2,O2 > d SiO2,eq , no P diffuses into the silicon wafer even in the N 2 atmosphere. Only if d SiO2,O2 < d SiO2,eq , phosphorus diffuses into the silicon wafer in the N 2 atmosphere. We propose a detailed chemical model to explain our experimental results, which assumes that the diffusion of Si from the wafer through the SiO 2 interface toward the PSG plays a key role. In this model, P can only diffuse into the Si wafer if P 2 O 5 in the PSG is reduced by the Si from the wafer to P and SiO 2 .
AbstractList The POCl3 diffusion is the main technology to form the p-n junction of industrial silicon solar cells. However, the diffusion mechanism of phosphorus (P) into the silicon wafer is not fully understood. In this article, we study the P diffusion mechanism during drive-in by systematically varying the drive-in time in the oxygen (O2) atmosphere and subsequently in nitrogen (N2). When increasing the drive-in time in O2 from 0 to 120 min, the sheet resistance R sheet stays constant at 485±30 Ω/sq. Hence, we demonstrate for the first time that the phosphorus diffusion can be completely suppressed in the O2 atmosphere. When adding a drive-in in the N2 atmosphere directly after the drive-in in O2, we find that the SiO2 thickness d SiO2,O2 changes from initially 2 to 10 nm after O2 drive-in to an equilibrium SiO2 thickness d SiO2,eq of 4.7 nm after N2 drive-in. We prove for the first time that if d SiO2,O2 > d SiO2,eq, no P diffuses into the silicon wafer even in the N2 atmosphere. Only if d SiO2,O2 < d SiO2,eq, phosphorus diffuses into the silicon wafer in the N2 atmosphere. We propose a detailed chemical model to explain our experimental results, which assumes that the diffusion of Si from the wafer through the SiO2 interface toward the PSG plays a key role. In this model, P can only diffuse into the Si wafer if P2O5 in the PSG is reduced by the Si from the wafer to P and SiO2.
The POCl 3 diffusion is the main technology to form the p-n junction of industrial silicon solar cells. However, the diffusion mechanism of phosphorus (P) into the silicon wafer is not fully understood. In this article, we study the P diffusion mechanism during drive-in by systematically varying the drive-in time in the oxygen (O 2 ) atmosphere and subsequently in nitrogen (N 2 ). When increasing the drive-in time in O 2 from 0 to 120 min, the sheet resistance R sheet stays constant at 485±30 Ω/sq. Hence, we demonstrate for the first time that the phosphorus diffusion can be completely suppressed in the O 2 atmosphere. When adding a drive-in in the N 2 atmosphere directly after the drive-in in O 2 , we find that the SiO 2 thickness d SiO2,O2 changes from initially 2 to 10 nm after O 2 drive-in to an equilibrium SiO 2 thickness d SiO2,eq of 4.7 nm after N 2 drive-in. We prove for the first time that if d SiO2,O2 > d SiO2,eq , no P diffuses into the silicon wafer even in the N 2 atmosphere. Only if d SiO2,O2 < d SiO2,eq , phosphorus diffuses into the silicon wafer in the N 2 atmosphere. We propose a detailed chemical model to explain our experimental results, which assumes that the diffusion of Si from the wafer through the SiO 2 interface toward the PSG plays a key role. In this model, P can only diffuse into the Si wafer if P 2 O 5 in the PSG is reduced by the Si from the wafer to P and SiO 2 .
Author Dullweber, Thorsten
Baumann, Ulrike
Jager, Philip
Mertens, Verena
Author_xml – sequence: 1
  givenname: Philip
  orcidid: 0000-0002-3033-0962
  surname: Jager
  fullname: Jager, Philip
  email: jaeger@isfh.de
  organization: Institute for Solar Energy Research GmbH, Emmerthal, Germany
– sequence: 2
  givenname: Verena
  surname: Mertens
  fullname: Mertens, Verena
  email: mertens@isfh.de
  organization: Institute for Solar Energy Research GmbH, Emmerthal, Germany
– sequence: 3
  givenname: Ulrike
  surname: Baumann
  fullname: Baumann, Ulrike
  email: baumann@isfh.de
  organization: Institute for Solar Energy Research GmbH, Emmerthal, Germany
– sequence: 4
  givenname: Thorsten
  surname: Dullweber
  fullname: Dullweber, Thorsten
  email: dullweber@isfh.de
  organization: Institute for Solar Energy Research GmbH, Emmerthal, Germany
BookMark eNpFjcFOwzAQRC0EEqX0C-BgiXOK7XWc-FilQIuKUokCx8iN7cZVGhcnOfD3RBTEXGalebNzhc4b3xiEbimZUkrk_fN6kW_y9ykjjEyBQApAz9CI0VhEwAmc_92Q0ks0ads9GSRILAQfod0Mz02nXG00zipzcKWq8YvXpsbWB9xVBs-dtX3rfIO9xevKt8fKh77Fy6bzP8Crq105xB_KmoDnfXDNDq_zrIb_7jW6sKpuzeTXx-jt8WGTLaJV_rTMZqvIUYAuSiQ1W7BUloRxTgjXidZQUi05CBMTUKlVImEkpVQrEUNMpN4yWW4tF7EBGKO7099j8J-9abti7_vQDJMF4wkDxmiaDNTNiXLGmOIY3EGFr0KyRAKl8A3DnWO8
CODEN IJPEG8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
7SP
8FD
L7M
DOI 10.1109/JPHOTOV.2020.3038331
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2156-3403
EndPage 57
ExternalDocumentID 9279311
Genre orig-research
GrantInformation_xml – fundername: GENESIS
  grantid: 0324274B
– fundername: German State of Lower Saxony and the German Federal Ministry for Economic Affairs and Energy (BMWi)
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACIWK
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
RIG
RNS
7SP
8FD
L7M
ID FETCH-LOGICAL-i133t-791eb3f19c0244004d7dd3c1d9436e503a8fa6720811da653509db29cbf465e33
IEDL.DBID RIE
ISSN 2156-3381
IngestDate Thu Oct 10 16:04:37 EDT 2024
Wed Jun 26 19:26:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-791eb3f19c0244004d7dd3c1d9436e503a8fa6720811da653509db29cbf465e33
ORCID 0000-0002-3033-0962
PQID 2472322187
PQPubID 2040418
PageCount 8
ParticipantIDs proquest_journals_2472322187
ieee_primary_9279311
PublicationCentury 2000
PublicationDate 2021-Jan.
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of photovoltaics
PublicationTitleAbbrev JPHOTOV
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0000605664
Score 2.2865324
Snippet The POCl 3 diffusion is the main technology to form the p-n junction of industrial silicon solar cells. However, the diffusion mechanism of phosphorus (P) into...
The POCl3 diffusion is the main technology to form the p-n junction of industrial silicon solar cells. However, the diffusion mechanism of phosphorus (P) into...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 50
SubjectTerms <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> in situ</tex-math> </inline-formula> </named-content> oxidation
Atmospheric measurements
Chemicals
Diffusion
Diffusion profile
emitter saturation current density
Nitrogen
Oxidation
P-n junctions
Phosphorus
phosphorus diffusion
Phosphorus pentoxide
phosphosilicate glass
Photovoltaic cells
Silicon
Silicon dioxide
Silicon wafers
SiO<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _{2}</tex-math> </inline-formula> </named-content> growth
Solar cells
Thickness
Title A Detailed Chemical Model for the Diffusion of Phosphorus Into the Silicon Wafer During POCl3 Diffusion
URI https://ieeexplore.ieee.org/document/9279311
https://www.proquest.com/docview/2472322187
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkx78hUYUTQ8eHWxdKeuRgARJEBJBuS1bfwiRbAS2i3-9r2WoUQ_eeliTpnvt-77X976H0K0fB0B7Iu7QSGiHKk87EcB6h3JFY_PMQ2xuzvCR9ad0MGvOSujusxZGKWWTz1TdDO1bvkxFbkJlDU7Amkwh717gkm2t1mc8xQVczqxaFDgx5gDz8opKOc_ljcG4P5qMnoEPEqCpLtAy01XO9lP5dQlbz9I7QsPdmrYJJW_1PIvr4v2HXON_F32MDguIidtbmzhBJZWcooNvwoMV9NrGXZs7qiTeSQZg0xZtiQHEYgCFuLvQOjehNJxqPJ6nm9U8Xecb_JBkqf3gabEEK0rwS6TVGndtuSMejzpL_2vuGZr27iedvlO0XHAWQFYzI14J7Fp7XIDvNsdbtqT0hSc59Zlqun4U6Ii1CAAJT0as6QPekDHhItaUNZXvn6NykibqAmHFXEnARBihmgrBuRJGal9wTzMBgyqqmM0KV1tVjbDYpyqq7X5HWBynTUjAZuDm8YLW5d-zrtA-MckmNjZSQ-VsnatrQAtZfGPN5APxnruI
link.rule.ids 315,786,790,802,27955,27956,55107
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgADb0R5emAkbeK4bj0iCiqlL4kC3aLED1pRJahNFn49ZyctCBjYPMSS5Zx933e--w6hSz9qAu0JuUNDoR2qPO2EAOsdyhWNzDMPsbk5vT5rP9HOuD4uoatVLYxSyiafqaoZ2rd8mYjMhMpqnIA1mULeNfDzbiOv1lpFVFxA5szqRYEbYw5wL6-olfNcXusM24PR4BkYIQGi6gIxM33lbEeVX9ew9S1326i3XFWeUvJWzdKoKj5-CDb-d9k7aKsAmfg6t4pdVFLxHtr8Jj24j16vcctmjyqJl6IB2DRGm2GAsRhgIW5Ntc5MMA0nGg8nyeJ9ksyzBb6P08R-8DidgR3F-CXUao5btuARDwc3M_9r7gF6ursd3bSdoumCMwW6mhr5SuDX2uMCvLc54LIhpS88yanPVN31w6YOWYMAlPBkyOo-IA4ZES4iTVld-f4hKsdJrI4QVsyVBIyEEaqpEJwrYcT2Bfc0EzCooH2zWcF7rqsRFPtUQafL3xEUB2oRELAauHu8ZuP471kXaL096nWD7n3_4QRtEJN6YiMlp6iczjN1Btghjc6tyXwCAra-3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Detailed+Chemical+Model+for+the+Diffusion+of+Phosphorus+Into+the+Silicon+Wafer+During+POCl3+Diffusion&rft.jtitle=IEEE+journal+of+photovoltaics&rft.au=Jager%2C+Philip&rft.au=Mertens%2C+Verena&rft.au=Baumann%2C+Ulrike&rft.au=Dullweber%2C+Thorsten&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2156-3381&rft.eissn=2156-3403&rft.volume=11&rft.issue=1&rft.spage=50&rft_id=info:doi/10.1109%2FJPHOTOV.2020.3038331&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-3381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-3381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-3381&client=summon