Bidirectional Motion Estimation with Cyclic Cost Volume for High Dynamic Range Imaging
We propose a high dynamic range (HDR) imaging algorithm based on bidirectional motion estimation. First, we develop a motion estimation network with the cyclic cost volume and spatial attention maps to estimate accurate optical flows between input low dynamic range (LDR) images. Then, we develop the...
Saved in:
Published in | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) pp. 1182 - 1189 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a high dynamic range (HDR) imaging algorithm based on bidirectional motion estimation. First, we develop a motion estimation network with the cyclic cost volume and spatial attention maps to estimate accurate optical flows between input low dynamic range (LDR) images. Then, we develop the dynamic local fusion network that combines the warped and reference inputs to generate a synthesized image by exploiting local information. Finally, to further improve the synthesis performance, we develop the global refinement network that generates a residual image by exploiting global information. Experimental results on the dataset from the NTIRE 2022 HDR Challenge Track 1 (Low-complexity constrain) demonstrate the effectiveness of the proposed HDR image synthesis algorithm. |
---|---|
AbstractList | We propose a high dynamic range (HDR) imaging algorithm based on bidirectional motion estimation. First, we develop a motion estimation network with the cyclic cost volume and spatial attention maps to estimate accurate optical flows between input low dynamic range (LDR) images. Then, we develop the dynamic local fusion network that combines the warped and reference inputs to generate a synthesized image by exploiting local information. Finally, to further improve the synthesis performance, we develop the global refinement network that generates a residual image by exploiting global information. Experimental results on the dataset from the NTIRE 2022 HDR Challenge Track 1 (Low-complexity constrain) demonstrate the effectiveness of the proposed HDR image synthesis algorithm. |
Author | Lee, Chul Vien, An Gia Mai, Truong Thanh Nhat Park, Seonghyun Kim, Gahyeon |
Author_xml | – sequence: 1 givenname: An Gia surname: Vien fullname: Vien, An Gia email: viengiaan@mme.dongguk.edu organization: Dongguk University,Department of Multimedia Engineering,Seoul,Korea – sequence: 2 givenname: Seonghyun surname: Park fullname: Park, Seonghyun email: seonghyun@mme.dongguk.edu organization: Dongguk University,Department of Multimedia Engineering,Seoul,Korea – sequence: 3 givenname: Truong Thanh Nhat surname: Mai fullname: Mai, Truong Thanh Nhat email: mtntruong@mme.dongguk.edu organization: Dongguk University,Department of Multimedia Engineering,Seoul,Korea – sequence: 4 givenname: Gahyeon surname: Kim fullname: Kim, Gahyeon email: 2019112529@mme.dongguk.edu organization: Dongguk University,Department of Multimedia Engineering,Seoul,Korea – sequence: 5 givenname: Chul surname: Lee fullname: Lee, Chul email: chullee@dongguk.edu organization: Dongguk University,Department of Multimedia Engineering,Seoul,Korea |
BookMark | eNotjttKw0AARFdRsK39AhH2BxL3nuyjxmoLFaWU-Fg2e0lXkl1JIiV_b7w8zYEZDjMHFyEGC8AtRinGSN4V5dvunQvKspQgQlKEMOFnYI6F4CzPqJTnYEawQEnGsbgCy77_QNMI5ZxLOgPlgze-s3rwMagGvsQfgKt-8K36xZMfjrAYdeM1LGI_wDI2X62FLnZw7esjfByDaqdyp0Jt4aZVtQ_1Nbh0qunt8j8XYP-02hfrZPv6vCnut4nHlA6JMJg7iVhFBVOIaY2JzZ2QlAnlqoxWLNfMOUM5Ic4wYTgRGkkpK8GVYXQBbv603lp7-Oym0914kDmfFJJ-Ay0NU30 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CVPRW56347.2022.00125 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1665487399 9781665487399 |
EISSN | 2160-7516 |
EndPage | 1189 |
ExternalDocumentID | 9856939 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i133t-6d15f904b364a04cc12e8f69346afb73b48c4ffd3522fd46d526c0999b65ad43 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:00 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i133t-6d15f904b364a04cc12e8f69346afb73b48c4ffd3522fd46d526c0999b65ad43 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9856939 |
PublicationCentury | 2000 |
PublicationDate | 2022-June |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
PublicationDecade | 2020 |
PublicationTitle | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) |
PublicationTitleAbbrev | CVPRW |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001085593 |
Score | 1.8713747 |
Snippet | We propose a high dynamic range (HDR) imaging algorithm based on bidirectional motion estimation. First, we develop a motion estimation network with the cyclic... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1182 |
SubjectTerms | Costs Dynamic range Heuristic algorithms Imaging Motion estimation Optical filters Tracking |
Title | Bidirectional Motion Estimation with Cyclic Cost Volume for High Dynamic Range Imaging |
URI | https://ieeexplore.ieee.org/document/9856939 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2AkydUMH6nB48Wdrcfu726QtAEQwgiN9LPhKhgZDnor7ftrmCMB2-bvWzTZvpmZt-bB8BVSrkVGTHIRFQhkmKBBKMcGVdMMGyw1swLhYcPbPBI7md0VgPXWy2MMSaQz0zHP4Z_-XqlNr5V1uUZZRzzOqinnJdarV0_xROuOK5EOnHEu_l0NH6iDJPUlYGJn8sZe0PsHyYqAUP6TTD8_npJHXnubArZUZ-_BjP-d3n7oL1T68HRFocOQM0sD0GzSi9hFbzrFpjeLEoAC90_OAz-PbDnYryUL0Lfk4X5h3pZKJiv1gWchqsLurwWej4IvC3t6-HYKxLg3WtwOGqDSb83yQeoslVAC1eQFojpmFoeEYkZERFRKk5MZt3KCRNWpliSTBFrtU_NrCZM04Qpn0hKRoUm-Ag0lqulOQbQj29zMZxom2kHhkbS2BIZGSkiJTKmTkDL79L8rRycMa826PTv12dgz59TycM6B43ifWMuHOIX8jIc9ReYvqvI |
link.rule.ids | 310,311,783,787,792,793,799,23944,23945,25154,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSECsZv9-DRQtv9aHu1QkApIQSRG9nPhKhgpBz017u7rWiMB29NL93sZva9mc6bB8BVRBLNYqw85RPh4Qgxj1GSeMokExQpJCW1QuFsQLsP-G5KphVwvdHCKKVc85lq2kf3L18uxdqWylpJTGiCki2wTSyvKNRa3xUV23KVoFKmE_hJK50MR4-EIhyZRDC0kzkDa4n9w0bFoUinBrKv7xfNI0_Ndc6b4uPXaMb_LnAPNL71enC4QaJ9UFGLA1ArCSYsw3dVB5ObeQFhrv4HM-fgA9smygsBI7RVWZi-i-e5gOlylcOJu7ygYbbQdoTA28LAHo6sJgH2XpzHUQOMO-1x2vVKYwVvblLS3KMyIDrxMUcUMx8LEYQq1mblmDLNI8RxLLDW0pIzLTGVJKTCUklOCZMYHYLqYrlQRwDaAW4mikOpY2ngUHESaMx9xZkvWEzFMajbXZq9FqMzZuUGnfz9-hLsdMdZf9bvDe5Pwa49s6Ir6wxU87e1Ojf4n_MLd-yfxnmvFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition+Workshops+%28CVPRW%29&rft.atitle=Bidirectional+Motion+Estimation+with+Cyclic+Cost+Volume+for+High+Dynamic+Range+Imaging&rft.au=Vien%2C+An+Gia&rft.au=Park%2C+Seonghyun&rft.au=Mai%2C+Truong+Thanh+Nhat&rft.au=Kim%2C+Gahyeon&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=2160-7516&rft.spage=1182&rft.epage=1189&rft_id=info:doi/10.1109%2FCVPRW56347.2022.00125&rft.externalDocID=9856939 |