Bidirectional Motion Estimation with Cyclic Cost Volume for High Dynamic Range Imaging

We propose a high dynamic range (HDR) imaging algorithm based on bidirectional motion estimation. First, we develop a motion estimation network with the cyclic cost volume and spatial attention maps to estimate accurate optical flows between input low dynamic range (LDR) images. Then, we develop the...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) pp. 1182 - 1189
Main Authors Vien, An Gia, Park, Seonghyun, Mai, Truong Thanh Nhat, Kim, Gahyeon, Lee, Chul
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a high dynamic range (HDR) imaging algorithm based on bidirectional motion estimation. First, we develop a motion estimation network with the cyclic cost volume and spatial attention maps to estimate accurate optical flows between input low dynamic range (LDR) images. Then, we develop the dynamic local fusion network that combines the warped and reference inputs to generate a synthesized image by exploiting local information. Finally, to further improve the synthesis performance, we develop the global refinement network that generates a residual image by exploiting global information. Experimental results on the dataset from the NTIRE 2022 HDR Challenge Track 1 (Low-complexity constrain) demonstrate the effectiveness of the proposed HDR image synthesis algorithm.
AbstractList We propose a high dynamic range (HDR) imaging algorithm based on bidirectional motion estimation. First, we develop a motion estimation network with the cyclic cost volume and spatial attention maps to estimate accurate optical flows between input low dynamic range (LDR) images. Then, we develop the dynamic local fusion network that combines the warped and reference inputs to generate a synthesized image by exploiting local information. Finally, to further improve the synthesis performance, we develop the global refinement network that generates a residual image by exploiting global information. Experimental results on the dataset from the NTIRE 2022 HDR Challenge Track 1 (Low-complexity constrain) demonstrate the effectiveness of the proposed HDR image synthesis algorithm.
Author Lee, Chul
Vien, An Gia
Mai, Truong Thanh Nhat
Park, Seonghyun
Kim, Gahyeon
Author_xml – sequence: 1
  givenname: An Gia
  surname: Vien
  fullname: Vien, An Gia
  email: viengiaan@mme.dongguk.edu
  organization: Dongguk University,Department of Multimedia Engineering,Seoul,Korea
– sequence: 2
  givenname: Seonghyun
  surname: Park
  fullname: Park, Seonghyun
  email: seonghyun@mme.dongguk.edu
  organization: Dongguk University,Department of Multimedia Engineering,Seoul,Korea
– sequence: 3
  givenname: Truong Thanh Nhat
  surname: Mai
  fullname: Mai, Truong Thanh Nhat
  email: mtntruong@mme.dongguk.edu
  organization: Dongguk University,Department of Multimedia Engineering,Seoul,Korea
– sequence: 4
  givenname: Gahyeon
  surname: Kim
  fullname: Kim, Gahyeon
  email: 2019112529@mme.dongguk.edu
  organization: Dongguk University,Department of Multimedia Engineering,Seoul,Korea
– sequence: 5
  givenname: Chul
  surname: Lee
  fullname: Lee, Chul
  email: chullee@dongguk.edu
  organization: Dongguk University,Department of Multimedia Engineering,Seoul,Korea
BookMark eNotjttKw0AARFdRsK39AhH2BxL3nuyjxmoLFaWU-Fg2e0lXkl1JIiV_b7w8zYEZDjMHFyEGC8AtRinGSN4V5dvunQvKspQgQlKEMOFnYI6F4CzPqJTnYEawQEnGsbgCy77_QNMI5ZxLOgPlgze-s3rwMagGvsQfgKt-8K36xZMfjrAYdeM1LGI_wDI2X62FLnZw7esjfByDaqdyp0Jt4aZVtQ_1Nbh0qunt8j8XYP-02hfrZPv6vCnut4nHlA6JMJg7iVhFBVOIaY2JzZ2QlAnlqoxWLNfMOUM5Ic4wYTgRGkkpK8GVYXQBbv603lp7-Oym0914kDmfFJJ-Ay0NU30
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CVPRW56347.2022.00125
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665487399
9781665487399
EISSN 2160-7516
EndPage 1189
ExternalDocumentID 9856939
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i133t-6d15f904b364a04cc12e8f69346afb73b48c4ffd3522fd46d526c0999b65ad43
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:00 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-6d15f904b364a04cc12e8f69346afb73b48c4ffd3522fd46d526c0999b65ad43
PageCount 8
ParticipantIDs ieee_primary_9856939
PublicationCentury 2000
PublicationDate 2022-June
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June
PublicationDecade 2020
PublicationTitle 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
PublicationTitleAbbrev CVPRW
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001085593
Score 1.8713747
Snippet We propose a high dynamic range (HDR) imaging algorithm based on bidirectional motion estimation. First, we develop a motion estimation network with the cyclic...
SourceID ieee
SourceType Publisher
StartPage 1182
SubjectTerms Costs
Dynamic range
Heuristic algorithms
Imaging
Motion estimation
Optical filters
Tracking
Title Bidirectional Motion Estimation with Cyclic Cost Volume for High Dynamic Range Imaging
URI https://ieeexplore.ieee.org/document/9856939
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2AkydUMH6nB48Wdrcfu726QtAEQwgiN9LPhKhgZDnor7ftrmCMB2-bvWzTZvpmZt-bB8BVSrkVGTHIRFQhkmKBBKMcGVdMMGyw1swLhYcPbPBI7md0VgPXWy2MMSaQz0zHP4Z_-XqlNr5V1uUZZRzzOqinnJdarV0_xROuOK5EOnHEu_l0NH6iDJPUlYGJn8sZe0PsHyYqAUP6TTD8_npJHXnubArZUZ-_BjP-d3n7oL1T68HRFocOQM0sD0GzSi9hFbzrFpjeLEoAC90_OAz-PbDnYryUL0Lfk4X5h3pZKJiv1gWchqsLurwWej4IvC3t6-HYKxLg3WtwOGqDSb83yQeoslVAC1eQFojpmFoeEYkZERFRKk5MZt3KCRNWpliSTBFrtU_NrCZM04Qpn0hKRoUm-Ag0lqulOQbQj29zMZxom2kHhkbS2BIZGSkiJTKmTkDL79L8rRycMa826PTv12dgz59TycM6B43ifWMuHOIX8jIc9ReYvqvI
link.rule.ids 310,311,783,787,792,793,799,23944,23945,25154,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSECsZv9-DRQtv9aHu1QkApIQSRG9nPhKhgpBz017u7rWiMB29NL93sZva9mc6bB8BVRBLNYqw85RPh4Qgxj1GSeMokExQpJCW1QuFsQLsP-G5KphVwvdHCKKVc85lq2kf3L18uxdqWylpJTGiCki2wTSyvKNRa3xUV23KVoFKmE_hJK50MR4-EIhyZRDC0kzkDa4n9w0bFoUinBrKv7xfNI0_Ndc6b4uPXaMb_LnAPNL71enC4QaJ9UFGLA1ArCSYsw3dVB5ObeQFhrv4HM-fgA9smygsBI7RVWZi-i-e5gOlylcOJu7ygYbbQdoTA28LAHo6sJgH2XpzHUQOMO-1x2vVKYwVvblLS3KMyIDrxMUcUMx8LEYQq1mblmDLNI8RxLLDW0pIzLTGVJKTCUklOCZMYHYLqYrlQRwDaAW4mikOpY2ngUHESaMx9xZkvWEzFMajbXZq9FqMzZuUGnfz9-hLsdMdZf9bvDe5Pwa49s6Ir6wxU87e1Ojf4n_MLd-yfxnmvFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition+Workshops+%28CVPRW%29&rft.atitle=Bidirectional+Motion+Estimation+with+Cyclic+Cost+Volume+for+High+Dynamic+Range+Imaging&rft.au=Vien%2C+An+Gia&rft.au=Park%2C+Seonghyun&rft.au=Mai%2C+Truong+Thanh+Nhat&rft.au=Kim%2C+Gahyeon&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=2160-7516&rft.spage=1182&rft.epage=1189&rft_id=info:doi/10.1109%2FCVPRW56347.2022.00125&rft.externalDocID=9856939