A Low-power and Real-time 3D Object Recognition Processor with Dense RGB-D Data Acquisition in Mobile Platforms

A low-power and real-time 3D object recognition with RGBD data acquisition system-on-chip (SoC) is proposed. By synthesizing dense RGB-D data through monocular depth estimation, the proposed system reduces the sensor power for 3D data acquisition by ×27.3 lower. Moreover, the proposed processor redu...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS) pp. 1 - 3
Main Authors Im, Dongseok, Park, Gwangtae, Ryu, Junha, Li, Zhiyong, Kang, Sanghoon, Han, Donghyeon, Lee, Jinsu, Park, Wonhoon, Kwon, Hankyul, Yoo, Hoi-Jun
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A low-power and real-time 3D object recognition with RGBD data acquisition system-on-chip (SoC) is proposed. By synthesizing dense RGB-D data through monocular depth estimation, the proposed system reduces the sensor power for 3D data acquisition by ×27.3 lower. Moreover, the proposed processor reduces the energy consumption of a point cloud based neural network (PNN) exploiting bit-slice-level computation and a point feature reuse method with a pipelined architecture. Additionally, the processor supports the point sampling and grouping algorithms of the PNN with a unified point processing core. Finally, the processor achieves 210.0 mW while implementing 34.0 frame-per-second (fps) end-to-end RGB-D acquisition and 3D object recognition.
AbstractList A low-power and real-time 3D object recognition with RGBD data acquisition system-on-chip (SoC) is proposed. By synthesizing dense RGB-D data through monocular depth estimation, the proposed system reduces the sensor power for 3D data acquisition by ×27.3 lower. Moreover, the proposed processor reduces the energy consumption of a point cloud based neural network (PNN) exploiting bit-slice-level computation and a point feature reuse method with a pipelined architecture. Additionally, the processor supports the point sampling and grouping algorithms of the PNN with a unified point processing core. Finally, the processor achieves 210.0 mW while implementing 34.0 frame-per-second (fps) end-to-end RGB-D acquisition and 3D object recognition.
Author Lee, Jinsu
Im, Dongseok
Ryu, Junha
Kang, Sanghoon
Park, Wonhoon
Kwon, Hankyul
Han, Donghyeon
Park, Gwangtae
Li, Zhiyong
Yoo, Hoi-Jun
Author_xml – sequence: 1
  givenname: Dongseok
  surname: Im
  fullname: Im, Dongseok
  email: dsim@kaist.ac.kr
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),Daejeon,Republic of Korea
– sequence: 2
  givenname: Gwangtae
  surname: Park
  fullname: Park, Gwangtae
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),Daejeon,Republic of Korea
– sequence: 3
  givenname: Junha
  surname: Ryu
  fullname: Ryu, Junha
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),Daejeon,Republic of Korea
– sequence: 4
  givenname: Zhiyong
  surname: Li
  fullname: Li, Zhiyong
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),Daejeon,Republic of Korea
– sequence: 5
  givenname: Sanghoon
  surname: Kang
  fullname: Kang, Sanghoon
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),Daejeon,Republic of Korea
– sequence: 6
  givenname: Donghyeon
  surname: Han
  fullname: Han, Donghyeon
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),Daejeon,Republic of Korea
– sequence: 7
  givenname: Jinsu
  surname: Lee
  fullname: Lee, Jinsu
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),Daejeon,Republic of Korea
– sequence: 8
  givenname: Wonhoon
  surname: Park
  fullname: Park, Wonhoon
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),Daejeon,Republic of Korea
– sequence: 9
  givenname: Hankyul
  surname: Kwon
  fullname: Kwon, Hankyul
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),Daejeon,Republic of Korea
– sequence: 10
  givenname: Hoi-Jun
  surname: Yoo
  fullname: Yoo, Hoi-Jun
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),Daejeon,Republic of Korea
BookMark eNotkF1LwzAYRqMoOOd-gTcBrzuTvmk-Lmen26DSMfV6pOlbzeia2VSG_15hu3rgcDgXzy256kKHhDxwNuWcmce8LIt8uVq_ZQIgnaYsTadGqVRKdUEmRmkuZSa40Sa7JKNUKEiE1HBDJjHuGGPADWMpjEiY0SIck0M4Yk9tV9MN2jYZ_B4pzGlZ7dAN_8yFz84PPnR03QeHMYaeHv3wRefYRaSbxVMyp3M7WDpz3z8-nlzf0ddQ-RbpurVDE_p9vCPXjW0jTs47Jh8vz-_5MinKxSqfFYnnAEMCWte2boQ2wBmvHVRKA1SOa-RCWGs4sw1z3NROoZOq5jJrZA1aMZRCMxiT-1PXI-L20Pu97X-354vgD__XXZ0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/COOLCHIPS54332.2022.9772667
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665419895
166541989X
EISSN 2473-4683
EndPage 3
ExternalDocumentID 9772667
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i133t-388dadf4893101dc3b7833bc18e144aa910af0c19dc7ec67d165f6d3870e64803
IEDL.DBID RIE
IngestDate Wed Jun 26 19:30:59 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-388dadf4893101dc3b7833bc18e144aa910af0c19dc7ec67d165f6d3870e64803
PageCount 3
ParticipantIDs ieee_primary_9772667
PublicationCentury 2000
PublicationDate 2022-April-20
PublicationDateYYYYMMDD 2022-04-20
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-April-20
  day: 20
PublicationDecade 2020
PublicationTitle 2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)
PublicationTitleAbbrev COOL CHIPS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003190023
Score 1.8391706
Snippet A low-power and real-time 3D object recognition with RGBD data acquisition system-on-chip (SoC) is proposed. By synthesizing dense RGB-D data through monocular...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computer architecture
Data acquisition
Energy consumption
Estimation
Neural networks
Point cloud compression
Three-dimensional displays
Title A Low-power and Real-time 3D Object Recognition Processor with Dense RGB-D Data Acquisition in Mobile Platforms
URI https://ieeexplore.ieee.org/document/9772667
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3aHsSTSit-M6BHN02z-dgca2Ot0tpSLfRW9itQlKTWBMFf726SVhQP3kIgYdnN5s2bffMGoSsTA7jC6Px818dubDPMHEIwlTLoKA1YVBVun4_-YOY-zL15DV1va2GUUoX4TFnmsjjLl6nITaqsrWMVjSdBHdWDMCxrtbb5FP0pGfzZQZeVjWa7Nx4Pe4P7yZNnPLo0FXQcq3rDj1YqBZL099BoM4ZSQPJi5Rm3xOcve8b_DnIftb5r9mCyRaMDVFNJE6VdGKYfeGVaoQFLJEx1XIhNP3kgEYy5ScLAdKMhShOo6gbSNZgELUSa5CqY3t3gCCKWMeiKt3xZyrxgmcAo5fqvApNXlpng972FZv3b594AVy0W8FKT0wwTSiWTsXGg0XtTCsIDSggXHao002JMBxMstkUnlCJQwg9kx_diXxK9y5XvUpscokaSJuoIAbd5HHKqpCRCP0lYwDWdFMJTnuNxSY9R00zWYlW6aCyqeTr5-_Yp2jULZs5tHPsMNbJ1rs41_Gf8olj3LyjhrvI
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5cQD2ptOLuAz06bZrJMh61sabajdqCtzJboCiJS4rgr_dNGiuKB28hkDBMZvJ935v3vkfImeUAnrJ5foEXUC9xBBUuY5RrHTYMAhY3hdtnL4jH3u2D_7BEzhe1MMaYIvnM1OxlcZavMzWzobI6chXEk3CZrCKv5sG8WmsRUcHFZBFojZyWRpr1Zr_facbtwb1vXbpQDLpurXzHj2YqBZa0Nkn3axTzFJLH2iyXNfXxy6Dxv8PcItXvqj0YLPBomyyZtEKyS-hk7_TZNkMDkWoYIjOktqM8sAj60oZhYPiVRZSlUFYOZK9gQ7QQocw1MLy5ohFEIhdwqV5m03miF0xT6GYS_ysweBK5pb9vVTJuXY-aMS2bLNApytOcMs610In1oMHdqRWTIWdMqgY3qLWEQDohEkc1LrQKjQpC3Qj8JNAM97kJPO6wHbKSZqnZJSAdmVxIbrRmCp9kIpQoKJXyje_6UvM9UrGTNXme-2hMynna__v2CVmPR93OpNPu3R2QDfvx7CmO6xySlfx1Zo6QDOTyuFgDn3vxsj0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Symposium+in+Low-Power+and+High-Speed+Chips+%28COOL+CHIPS%29&rft.atitle=A+Low-power+and+Real-time+3D+Object+Recognition+Processor+with+Dense+RGB-D+Data+Acquisition+in+Mobile+Platforms&rft.au=Im%2C+Dongseok&rft.au=Park%2C+Gwangtae&rft.au=Ryu%2C+Junha&rft.au=Li%2C+Zhiyong&rft.date=2022-04-20&rft.pub=IEEE&rft.eissn=2473-4683&rft.spage=1&rft.epage=3&rft_id=info:doi/10.1109%2FCOOLCHIPS54332.2022.9772667&rft.externalDocID=9772667